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Abstract: Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation 
structures or environmental conditions between sites classified by a study animal's presence or absence. These 
presence/absence studies make questionable assumptions about the habitat value of the comparison sites and 
the microhabitat data often violate the DFA's assumptions of an equal covariance structure and multivariate 

normality. An alternative is to generate an ordinal measure of site-use intensity from radiotelemetry locations. 
This measure is derived from the percentage of total telemetry points of a study animal that are found at 
use-only sites, overcoming many of the problems associated with defining "absence" sites. The use-intensity 
response is then modeled as a function of microhabitat variables using ordered polytomous logistic regression 
(PLR). Unlike DFA, PLR does not require covariance equality or multivariate normality, and allows cate- 
gorical microhabitat variables. The classification error of the microhabitat model developed with PLR is then 
assessed by jackknifing. This technique is demonstrated with an example analysis of the foraging microhabitat 
of the northern spotted owl (Strix occidentalis caurina). The resulting model correctly classified 78% of the 

sample stands in the jackknife evaluation. For animals with site fidelity and radiotelemetry data, the proposed 
technique may provide a robust alternative for microhabitat analysis. 
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Effective species management and conser- 
vation require understanding of wildlife habitat 

requirements. Although habitat can be analyzed 
at many scales, it is often broadly classed in 2 
levels: extensive or macrohabitat analysis iden- 

tifying the general environmental factors, plant 
cover, or seral stage of an animal's habitat; and 
intensive or microhabitat analysis that focuses 
on uncovering specific vegetation structures or 
environmental conditions important to the study 
species (Morrison et al. 1992). Macrohabitat 

analysis provides essential information on po- 
tential habitat areas in a diverse landscape. An 
animal, however, may respond to specific veg- 
etation structures or abiotic conditions rather 
than the whole suite of structures associated with 
a general macrohabitat condition (Hilden 1965; 
Green 1971; Dueser and Shugart 1978; Smith et 
al. 1981). Vegetation structure and environ- 
mental conditions are highly variable within a 

plant association or seral stage, hence habitat 

quality will vary greatly within a general veg- 
etation type. To effectively model a species' mi- 
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crohabitat, the vegetation structures associated 
with selected habitat need to be identified. 

Most microhabitat analyses have used the 
concept of a niche gestalt (James 1971) based 
on Hutchinson's multidimensional niche theory 
(Hutchinson 1957, 1978). An animal's niche is 
defined as the "hypervolume" in the n-dimen- 
sional space of environmental characteristics 
which describes the conditions in which the spe- 
cies is found. The animal's multidimensional 
niche is inferred from a multivariate analysis of 
a suite of environmental variables measured 
across a range of sites (Capen 1981, Shugart 
1981). This approach has been used to develop 
single-species habitat models (Verner et al. 1986) 
by management agencies to evaluate the habitat 
quality of different areas (e.g., the Habitat Suit- 
ability Index [Fish and Wildl. Serv. 1981]). 

However, the common analysis used in de- 
veloping these habitat models relies on 2 ques- 
tionable methods which weaken the results 
(Noon 1986): (1) niche characteristics are in- 
ferred from a comparison of presence sites 
(where the study animal was observed) and ab- 
sence sites (where the study animal was not ob- 
served); and (2) the comparison is based on a 
questionable application of discriminant func- 
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tion analysis (DFA). Detecting or not detecting 
an animal at a site provides little information 
on the site's habitat value, and does not establish 
that the absence site is actually avoided. Fur- 
thermore, using DFA for habitat models re- 

quires the assumption that the independent 
variables, in this case the suite of environmental 
measures, have a joint multivariate normal dis- 
tribution with a common covariance structure 
across all sites (both presence and absence sites) 
(Johnson 1981). Ecological datasets rarely meet 
these conditions and DFA is not robust to major 
departures from the multivariate normality as- 

sumption, such as when categorical variables are 
included in the analysis (Hassler et al. 1986). 
The predictive power of single-species habitat 
models could be improved by using a better site- 

suitability measure than the dichotomous pres- 
ence/absence and a statistical method which 
does not require covariance equality and mul- 
tivariate normality for the habitat variables' joint 
distribution. 

An alternative method for single-species mi- 
crohabitat analysis is to generate a ranked, po- 
lytomous (many-valued) relative measure of an- 
imal use based on radiotelemetry data. Ordinal 
polytomous logistic regression is then used to 
model changes in use-intensity across sites as a 
function of changes in environmental condi- 
tions, providing a new method for niche infer- 
ence. Multi-year radiotelemetry data on repro- 
ducing animals provides a relative measure of 
site use-intensity based on the percentage of 
telemetry points in an animal's home range 
which occur at a sample site. The relative mea- 
sures are the basis of general categories of use- 
intensity (e.g., low, medium and high). In con- 
trast to presence/absence microhabitat analysis, 
this technique provides an ordered, categorical 
measure of animal use while avoiding assump- 
tions about no-use sites. Ordinal polytomous lo- 
gistic regression is a class of general linear mod- 
els (McCullagh and Nelder 1989) which relate 
an ordinal dependent variable (e.g., use-inten- 
sity categories) to a collection of independent 
variables (e.g., microhabitat measures), which 
may include both continuous and categorical 
variables (McCullagh and Nelder 1989, Ander- 
son 1984). PLR makes no direct assumptions 
about the independent variables' distributions. 
A jackknife technique is used to assess the ro- 
bustness of the final selection of microhabitat 
measures for predicting animal-use intensity. We 
will first discuss the techniques of these 2 steps, 

and then give an example of these methods ap- 
plied to microhabitat analysis of the northern 

spotted owl. 
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METHODS 
Previous Microhabitat Analysis 

Most single-species microhabitat studies use 
a binary classification of sample sites such as 

presence/absence or use and random. In these 
studies, vegetation and site characteristics are 

compared between an area where the animal 
was located and one in which it was not, with 
microhabitat niche characteristics inferred from 
the differences (e.g. Martinka 1972, Conner and 
Adkisson 1976, Whitmore 1981, Mills et al. 1993). 
Modeling an animal's microhabitat from this 

type of comparison involves 2 questionable as- 

sumptions: (1) presence sites are suitable habitat, 
and (2) absence sites are unsuitable habitat. 

Presence sites may be identified from single 
or multiple observations of the study species at 
a location. However, locating an animal at a site 
does not indicate that the site is suitable habitat. 
The site may have little or no habitat value if 
the animal is merely moving through the area. 
A further problem is that different sites may 
serve different habitat functions. For example, 
the collection of presence sites may contain both 

foraging and resting areas, each with potentially 
distinct microhabitat qualities. Some studies have 
identified presence sites only when a particular 
behavior is displayed, such as singing by the 

study bird (James 1971, Holmes 1981). This ap- 
proach increases the odds that a particular site 
is valued habitat and that microhabitat is being 
compared between areas used in the same man- 
ner. 

The selection of absence sites is especially 
problematic. Johnson (1981) pointed out that 3 
possible conditions may exist at a site where the 
species is not detected: (1) habitat is unsuitable; 
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(2) habitat is suitable but the species is absent 
for other reasons, such as a low population or 

inter-specific competition; and (3) habitat is suit- 
able and the species is present but not detected. 
Presence/absence studies assume the first con- 
dition always holds when any of the 3 expla- 
nations are possible. The resulting microhabitat 

analysis will not be useful, and perhaps even 

misleading, if absence sites are actually suitable 
habitat. 

These uncertainties blur the distinction be- 
tween presence/absence sites (Johnson 1981). 
The presence/absence analysis has a funda- 
mental flaw: comparison sites do not come from 
distinct sample populations, and the actual hab- 
itat value of the use and nonuse sites is unknown. 

Developing a more robust model of animal mi- 
crohabitat requires a measure of use that avoids 
absence or random comparison sites. 

Statistical Analysis of Microhabitat 
Models 

Discriminant function analysis is the general 
statistical method most often used to infer mi- 
crohabitat characteristics from a comparison of 
use and nonuse sites. Unfortunately, microhab- 
itat data seldom, if ever, meet the 2 main as- 
sumptions that underlie DFA: (1) the covariance 
matrix of the independent variables (microhab- 
itat measures) is identical for both the use and 
nonuse sites, and (2) the independent variables 
have a multivariate normal joint distribution. 
The covariance structure of habitat measures 
would be expected to differ among use and non- 
use sites for most study species (e.g. variance in 

snag volume among presence and absence sites 
for cavity-nesting birds). Unequal covariance 
structure will distort the classification equations 
(Lachenbruch 1975, Williams 1981) and the dis- 
tortion will be more acute if sample sizes are 
disproportionate such as when more absence or 
random sites are sampled than presence sites 

(Holloway and Dunn 1967, Pimentel 1979, Mor- 
rison 1984). DFA's assumption that independent 
variables have a multivariate normal joint dis- 
tribution is difficult to test and is a condition 
unlikely to be met by microhabitat data. Fur- 
thermore, because categorical measures cannot 
be multivariate normal by definition, discrimi- 
nant function analysis should not be used when 
microhabitat measures include categorical data 
(Press and Wilson 1978, Noon 1986). 

Two other basic methods for modeling mi- 
crohabitat selection have also been proposed, 

both of which use maximum likelihood tech- 
niques and therefore have less restrictive data 
requirements than DFA. The first, binary lo- 
gistic regression (Capen et al. 1986, Brennan et 
al. 1986, Manly et al. 1993), assumes that com- 
parison sites come from distinct populations, and 
relies on the identification of use sites and non- 
use, or absence, sites. The second relies on com- 
parison of a sample of available sites with a 

sample of use sites based on log-linear or pro- 
portional hazards models (Manly et al. 1993). 
Manly et al.'s approach avoids the necessity to 

identify nonuse sites and attempts to estimate 
relative probability of use (or absolute proba- 
bility of use if sampling fractions are known). 

Proposed Technique 
Identifying the individual features important 

to an animal's microhabitat using only pres- 
ence/absence comparisons is difficult when the 
environmental conditions of the use sites are 

highly correlated with each other while strongly 
differing from available but avoided sites. For 

example, a comparison of old-growth use sites 
and avoided clearcut or young-forest sites can 
do little to identify the particular features im- 

portant to an old-growth associated species be- 
cause the vegetation structure is too distinct be- 
tween the contrast sites. In these conditions, a 
microhabitat analysis is needed which can tease 
apart a complex suite of environmental condi- 
tions within the species' preferred habitat type. 
One approach to a more robust analysis is to 

compare an ordinal gradient of use preferences 
against subtle microhabitat changes within the 

preferred use sites. 
A better model of single-species microhabitat 

could be developed if site comparisons did not 

rely on absence locations and a statistical anal- 

ysis was used where assumptions are not violated 
by the measurement data. In contrast to the 
binary habitat-use measure provided by pres- 
ence/absence data, radiotelemetry data can 
provide a relative measure of animal preference 
for use-only sites. A measure of the animal's use 
is derived from the percentage of total telemetry 
points which occur in any 1 area. The method 
requires no assumptions about unused areas as 

only areas with known, repeated use are as- 

signed measures and included in the model 

building. Differences in the level of use-intensity 
among sites are analyzed against changes in mi- 
crohabitat conditions using ordered polytomous 
logistic regression. The robustness of the final 
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PLR model is assessed using the existing data 
set and a jackknife technique. 

Radiotelemetry Data 

Telemetry data have been used to establish 
migration patterns (Mech and Frenzel 1971, 
Fritts et al. 1984) home range size (Trent and 

Rongstad 1974, Solis and Gutierrez 1990), ac- 

tivity (Marshall and Kupa 1963), predation 
(Mech 1967), macrohabitat preferences (Nelson 
1979, Forsman et al. 1984) and mortality (Cook 
et al. 1967, Dumke and Pils 1973, Franzmann 
et al. 1980) of a study animal. For animals with 
site and home range fidelity, telemetry can also 
capture the animal's relative use patterns over 
a longer time period and larger area than can 
field observations of an animal's presence (Tur- 
kowski and Mech 1968, White and Garrott 1990). 
Telemetry locations identify particular use-sites 
and the frequency with which the study animal 
returns to each area. 

Caution, however, should be used when in- 

ferring habitat quality from site use-intensity. 
The amount of time an animal spends in 1 area 
does not necessarily correspond to the site's hab- 
itat value. For example, an animal may spend 
only 5 minutes a day drinking, yet if water is 
scarce, the site is essential to the animal's sur- 
vival (Morrison et al. 1992). While telemetry 
information cannot remedy this problem of in- 

terpretation, it can provide a larger sample of 
site use than field observations of species pres- 
ence or absence. Telemetry increases the area 
and time period over which the animal can be 
followed, allows for night tracking, and reduces 
human observer effects on the animal's behavior 
(Mech 1983). While no sampling procedure can 
reveal an animal's perception of a site's habitat 
value, we believe telemetry provides the best 

approximation of animal-use preferences. 
In microhabitat analysis, site characteristics 

are the study focus rather than individuals or 

groups of animals. The scale and definition of 
a site depends on an animal's autecology and 
how sites can be spatially delineated from sur- 

rounding areas. A site identified by telemetry 
should be the area around a location that is 

relatively homogenous for the environmental 
conditions that may be important to the study 
animal, such as a similar plant association, seral 

stage, disturbance history, or microclimate con- 
ditions. 

For telemetry to provide unbiased informa- 
tion on use-intensity patterns, locations should 

be classified and screened in an effort to stan- 
dardize sample sites. Three general guidelines 
are proposed: (1) only telemetry data for suc- 

cessfully reproducing animals should be select- 
ed; (2) telemetry locations should be classified 

by factors possibly affecting microhabitat selec- 
tion or quality (e.g., season, species behavior, 
and the animal's sex); (3) locations should be 
screened for independence and a maximum er- 
ror size. 

Reproductive success of the study animal 
should be a minimum qualification for selecting 
habitat for measurement. Habitat quality can- 
not be measured by sighting-intensity or animal 

density alone. Demographic factors such as re- 

productive success, fledgling survival and mor- 

tality should also be considered (Van Home 
1983). This qualification is particularly impor- 
tant for species that occupy marginal habitat 
without reproducing when their preferred hab- 
itat type is not available (Krebs 1971, Lidicker 
1975, Atwood 1980, Thomas et al. 1990). 

Telemetry datasets include many more lo- 
cation samples than presence/absence obser- 
vations and therefore many different types of 
microhabitats (i.e., foraging, roosting, nesting). 
Whenever possible, sample locations should be 

categorized by factors such as the animal's sex, 
the season and the type of behavior, to avoid 

collecting samples from different populations 
(Pimentel 1979). While all microhabitat studies 
face this problem, an advantage of telemetry 
data is that sample locations can be standardized 

by season, sex, and possibly behavior activity 
(inferred from the time of day). 

Telemetry should be screened so that loca- 
tions have a standardized error and are tem- 

porally independent. Location errors can be es- 
timated with the size of the polygon formed by 
the intersection of 3 or more telemetry vectors 
(Lenth 1981, Mech 1983, White and Garrott 

1990). Although the size of an acceptable pol- 
ygon will depend on the scale of an animal's 
movements and the heterogeneity of the use 
area, any telemetry error polygon which over- 

laps areas with distinctly different vegetation 
(e.g., a forest and an adjacent clearcut) should 
be discarded. Autocorrelation between teleme- 

try locations must also be examined as statistical 
methods generally require independent obser- 
vations. The location of an animal at any one 
time influences its location in the immediate 
future. To insure that telemetry locations are 
not autocorrelated (Swihart and Slade 1985), 
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enough time must elapse between observations 
for the locations to be independent. Telemetry 
locations taken in less than the required elapsed 
time should be deleted from the dataset before 
analysis. 

Having selected a sub-sample of telemetry 
locations screened by these criteria, a relative 
measure of use-intensity can be developed. This 
measure is relative as no analysis can claim, for 

example, that a site with 5 telemetry points is 

preferred habitat over a site with 4 telemetry 
points. Still, the approach provides general cat- 

egories of use-intensity derived from a longer- 
term, larger-area sample than standard field ob- 
servations of species presence. The screened te- 

lemetry points are mapped and use-sites iden- 
tified by point clusters. The number of telem- 

etry points at each site, as a percentage of the 
total selected telemetry points for each animal, 
is calculated. The sites are then classified into 
relative use-intensity categories based on their 
telemetry percentages (e.g., low, medium, and 

high). The number of categories should be the 
most parsimonious grouping of cluster patterns 
found in a frequency distribution of the sites by 
telemetry percentages. 

The transformation of telemetry locations is 
a categorization of an underlying continuous 

response variable, percentage of total animal 
locations, into ordinal groups of relative animal 
use such as low, medium and high. Discriminant 
function analysis, which assumes that groups 
being compared are samples from distinct pop- 
ulations, should not be used with this measure 
of use-intensity. Polytomous logistic regression 
is specifically designed for a multi-valued cat- 
egorical dependent variable, even one derived 
from making an underlying continuous variable 
discrete. Polytomous logistic regression analyzes 
the gradient of animal use against changes in 
microhabitat, investigating the dependencies of 
animal use on the various microhabitat mea- 
sures. 

Polytomous Logistic Regression 
Ordered PLR models an ordinally ranked de- 

pendent variable (e.g. animal-use intensity) as 
a function of multiple continuous or discrete 

independent variables (e.g. habitat measure- 
ments). While traditional binary logistic re- 

gression has seen increasing ecological appli- 
cation (Hassler et al. 1986, Shanubhogue and 
Gore 1987, Lenihan 1993, Trexler and Travis 
1993), PLR has been used mainly in medical 

studies (Ashby et al. 1986, Hosmer and Leme- 
show 1989). So far, wildlife studies have used 
only the binary form of logistic regression to 
model dependent variables (Capen et al. 1986, 
Brennan et al. 1986). 

Binary and PLR make no direct assumptions 
about the multivariate distributions of the in- 
dependent variables (McCullagh and Nelder 
1989, Anderson 1984). Rather, logistic regres- 
sion assumes that a particular functional relation 
holds between the dependent and independent 
variables: the posterior log odds ratio, or logit, 
of the dependent variable is a linear function 
of the independent variables. The logit form can 
arise from a wide range of assumptions regard- 
ing the multivariate distribution of the inde- 
pendent variables (Anderson 1972). The inde- 
pendent variables need not follow a multivariate 
normal distribution, nor is there any restriction 
on categorical independent variables as in DFA 
(Press and Wilson 1978). Model parameter es- 
timates and significance tests are based on max- 
imum likelihood estimation. The likelihood for- 
mulas are derived from distributional assump- 
tions for the dependent variable (the logit as- 
sumption) and the sampling model underlying 
the data collection (Anderson 1984, Hosmer and 
Lemeshow 1989). 

Polytomous logistic regression models the 
probability that a site belongs to use-intensity 
group i as a function of the site's observed mi- 
crohabitat measures using the logit model of 
proportional odds (Anderson 1984, McCullagh 
and Nelder 1989). The model retains the infor- 
mation inherent in the ordinal rank of the de- 
pendent variables (e.g. low, medium, and high). 

let X = (Xl, x3, , ... x,) 
= the vector of observed microhabitat 

measures for site A, and 
I,(X) = the probability that a site with mi- 

crohabitat measures X belongs to 
use category i (i = 1, . . .,k), (e.g., 
use-intensity groups with an or- 
dinal rank), 

then: 

F,(X) = n,(x) + 112(X) + 113(X) + ... + (x) 
i= 1,. . ,k- 1 

Fk(X) = lk(X) = 1 - Fki(X) is the 'cumulative 

probability' that a site with microhabitat mea- 
sures X belongs to use categories 1,2, ... or i. 
For example: Flow(X) = nI0w(X), Fmedj,u(X) = 

nlow(X) + nmed,um(x), Fh,gh(X) = 1 - Fmedm(X) 
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The logit is defined as the natural logarithm 
of the cumulative odds: 

L,(X) = Logit(F,(X)) = ln[(F,(X)/(1 - F,(X))] 

PLR models the logit as a linear function of 
the independent variables: 

L,(X) = a, + 3,x, + 2x2 ... -+ ,x 

i= ,...,k- 1 

Lk(X) = -(ak-, + x,- + {2x2 + ... + ,x,) 

i=k 

a, < a2 < a3 < .. < afk_- 

For example: L,,(X) = In [(F(,X))/(1 - F,(X))] 
= a,o + 1X1x + f2X2 + . .. nXn. 

Note that this relation implies that the logit 
functions, Li(X), for the various use-intensity 
categories are parallel planes which may differ 
only by their intercepts, not by the slopes of the 
microhabitat measures. This assumption of pro- 
portional odds can be tested in the process of 
fitting the model. Furthermore, if the intercepts 
for 2 use-intensity categories are statistically in- 
distinguishable, the 2 categories cannot be dif- 
ferentiated by the independent variables (mi- 
crohabitat measures) in the dataset. 

The parameters, (a's, f's), are estimated using 
maximum likelihood techniques (Anderson 1984, 
Hosmer and Lemeshow 1989). This basis in 
maximum likelihood gives PLR 2 principle ad- 
vantages over DFA. First, microhabitat mea- 
sures need not have a multivariate normal dis- 
tribution. Second, the ordinal rank of the de- 
pendent variable, (e.g. low, medium, and high- 
use-intensity categories), is retained in model 
development. Discriminant function analysis 
models the dependent variable categories as dis- 
tinct populations, thereby losing any informa- 
tion on their relative order. 

Polytomous logistic regression does assume 
that sample sizes are sufficiently large for the 
asymptotic results of maximum likelihood the- 
ory to hold (McCullagh and Nelder 1989). Even 
at small sample sizes, however, the maximum 
likelihood estimates are more consistent than the 
DFA estimates (Press and Wilson 1978, Choi 
1986). For datasets where the independent vari- 
ables are multivariate normally distributed and 
the dependent variable is dichotomous, DFA is 
a more powerful technique (Afifi and Clark 
1984). Use of DFA, however, does require losing 
any information inherent in the ranking of the 
sites by use-intensity. 

After the final, parsimonious PLR model is 
developed (see Hosmer and Lemeshow 1989 for 
a detailed discussion), an allocation method must 
be chosen. The allocation method determines 
which category of use-intensity to assign a site, 
based on the model's predictions. Though sev- 
eral methods have been proposed (Ashby et al. 
1986) the most commonly used is the maximum 
probability method: the observed microhabitat 
measures for a site are entered into the final 
model, along with the estimated model param- 
eters, to calculate the site's logit for each use- 
intensity class. The estimated probability of the 
site belonging to a particular use-intensity class 
can then be calculated from the logits: 

F,(X) = 1/(1 + exp(-L,(X))) 

i=1l.... k i 1, . . . , k 

I,(X) = F(X) = 1/(1 + exp(-L,(X))) 

I,(x) = F,(X)F - F_ ,(X) 

i= 2,..., k- 1 

ln(x) = Fk(X) 

For example: l,,(X) = F,,(X) = 1 / (1 + 

exp(-Low(X))), IId,,,(X) = Fme,,d(X) - Ft(X). 
The site is then assigned to the use-intensity 

class with the highest probability of member- 
ship. 

Polytomous logistic regression is in SAS under 
the CATMOD procedure (SAS Inst. Inc. 1988) 
and in S-Plus (Stat. Sci. 1993) under ordinal 
logistic regression in the Design Library Func- 
tions (Harrell 1994). 

Model Assessment 
Whenever possible, microhabitat models 

should be tested to assess how well they can 
predict animal usage of different potential hab- 
itats. While some models are tested (Cook and 
Irwin 1985, Lancia et al. 1982, Laymon and 
Barrett 1986, Laymon and Reid 1986, Raphael 
and Marcot 1986), most are not because of cost 
and time constraints (Morrison et al. 1992). Test- 
ing microhabiat models reduces the risk of find- 
ing spurious correlations (Karr and Martin 1981, 
Rexstad et al. 1988) or failing to find significant 
relations (Armstrong 1967). The ability of mi- 
crohabitat models to predict habitat usage from 
environmental variables will vary between spe- 
cies. Life history traits such as whether a species 
is migratory or territorial, a generalist or has a 
narrow niche, will likely influence the predic- 
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tive power of a microhabitat model. Given these 
influences on habitat usage, models at best may 
account for only 50% of the variation in a species 
density or abundance at a particular site (Mor- 
rison et al. 1992). Before applying a microhab- 
itat model, wildlife managers should know how 
well a model performs. 

One measure of performance is to estimate 
the classification errors of the final model. This 
is done by estimating the probability that a site 
of use-intensity i is erroneously classified to be 
of use-intensity j (where j # i). Estimating these 
error probabilities from the same data used to 
estimate model parameters will give biased re- 
sults (Efron and Gong 1983). Generally, time 
and cost preclude collecting a new dataset for 

evaluating a model's performance. A jackknife 
approach, however, can overcome this estima- 
tion bias using the existing dataset (Knoke 1986). 
A single observation is removed from the data, 
the remaining data are used to estimate the 
model parameters, and the fitted model is ap- 
plied to this unused observation to predict its 

use-intensity class. This process is repeated for 
each observation in the dataset, giving an un- 
biased estimate of the classification error for 
each use-intensity group. 

Technique Example 
To provide an example of how these tech- 

niques can be applied, we analyzed a demon- 
stration set of structural characteristics of north- 
ern spotted owl foraging microhabitat in Wash- 

ington State. Due to the controversy surround- 

ing old-growth forests and the spotted owl, 
studies have produced extensive multi-year ra- 

diotelemetry data for owl pairs. An additional 
benefit was that the selection of the demonstra- 
tion set of microhabitat measures was aided by 
many studies of spotted owl ecology (Forsman 
et al. 1984, Gutierrez and Carey 1985, Hamer 
1988, Solis and Gutierrez 1990, Thomas et al. 
1990, Carey et al. 1992) and the distinctive 
structures of the owl's preferred macrohabitat, 
old-growth forests (Franklin et al. 1981, Frank- 
lin and Spies 1984, Spies and Franklin 1991). 

The Northern Spotted Owl 
The northern spotted owl is found from 

northern California to southern British Colom- 
bia in forest conditions that range from moist 
coastal redwood (Sequoia sempervirens), west- 
ern hemlock (Tsuga heterophylla), and Sitka 
spruce (Picea sitchensis) to more mesic Doug- 

las-fir (Pseudotsuga menziesii) and mixed-co- 
nifer forests. Throughout its geographic range, 
the owl's preferred habitat is older forests (Tho- 
mas et al. 1990). Several hypotheses have been 
proposed to explain this preference (Forsman et 
al. 1977, 1984; Carey 1985, Carey et al. 1992). 
Two of these hypotheses focus on the owl's for- 

aging success: (1) prey species are more abun- 
dant in older forests (Carey et al. 1992); and (2) 
prey capture is higher in older forests due to 
favorable foraging conditions (Carey et al. 1992, 
Rosenberg et al. 1994). The owl's prey base 

changes in different areas and appears to rely 
on woodrats (Neotoma spp.) in drier areas and 
northern flying squirrels (Glaucomys sabrinus) 
in more mesic forests. Over the owl's geographic 
range, changes in forest structure and owl prey 
base indicate preferred microhabitat conditions 
may also vary among regions. While foraging 
microhabitat conditions for the northern spotted 
owl have been examined in northern California 
(Solis and Gutierrez 1990), they have not been 
well-studied in the northern extent of the owl's 
range, where home range size reaches its max- 
imum (Hamer 1988) (see Mills et al. [1993] for 
a study of roost sites). To demonstrate the pro- 
posed microhabitat analysis methods, we ex- 
amined 5 structural characteristics of owl for- 
aging sites on the Olympic Peninsula and in the 
North Cascades. The principal prey in these 
areas of Washington State are northern flying 
squirrels (Forsman et al. 1991). The areas' old- 
growth forests are mesic, multi-layered stands 
of western hemlocks and Douglas-fir. 

Radiotelemetry Data Analysis 
We selected radiotelemetry data collected on 

spotted owls which met the following criteria: 
data collection lasted 2 years or longer; observed 
owl pairs had produced offspring; and the time, 
date, bird's sex and estimated error of each te- 
lemetry location had been recorded. 

Multi-year telemetry data were preferred be- 
cause the home range size and extent of older 
forests used by spotted owls may not stabilize 
in 1 year of study (Carey et al. 1992). Larger, 
long-term telemetry data were preferred as the 
increase in sample size of locations probably is 
more representative of the owl's use prefer- 
ences. 

We included only telemetry for reproducing 
spotted owl pairs to reduce the chance of sam- 
pling sub-optimal habitat. As the extent of old- 
growth forests has diminished in the Pacific 
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Fig. 1. A map of 162 selected telemetry locations for an owl 
pair plotted by universal transverse mercator (UTM) coordi- 
nates. Lines indicate stand boundaries where forest structure 
changes due to clearcut harvesting or disturbance. Unmarked 
areas between use areas are clearcuts or young forest (age 
<50 yr). Stands with different use-intensity levels are: "A" a 
high-use stand (36% of the owl pair's total telemetry locations), 
"B" a medium-use stand (7%), "C" a low-use stand (2%), "D" 
a stand with less than 3 locations which was excluded from 
the analysis, and "E" 2 stands excluded because of their small 
size. 

Northwest, spotted owls sometimes pack into 
sub-optimal habitat where they survive, but 
rarely reproduce (Thomas et al. 1990, Carey et 
al. 1992). Because owl reproduction is highly 
variable year-to-year, and telemetry devices may 
affect reproductive success (Thomas et al. 1990, 
Paton et al. 1991) we required only that owl 
pairs had been observed to produce offspring 
either before, during, or after the telemetry col- 
lection. 

In an effort to standardize telemetry locations, 
only data which identified the time, date, bird 
sex, and error of each location were selected. 
The recorded time of each telemetry location 
allowed us to select observations collected at 

night when the owl is predominantly foraging 
(Forsman et al. 1984, Guetterman et al. 1991), 
and to discard consecutive locations taken in less 
than 72 hours that might not be independent 
(Carey et al. 1989). Using each location's record 
of a bird's sex and date, we eliminated female 
locations during the breeding season that might 
be nesting locations. Acceptable error for each 
location was set at telemetry polygons of 5 ha 
or less. In the study areas, this selected size iden- 
tified areas with a homogenous structure within 
a matrix of clearcuts and uncut forest. All lo- 
cations that occurred at the edge between a 
clearcut and forest were discarded. 

Using these criteria, we selected telemetry for 
11 owl pairs. The number of locations for the 

11 pairs ranged from 107 to 193 points. We 
plotted telemetry points on a 1:24,000 scale us- 
ing the UTM (universal transverse mercator) 
coordinates for each location. We overlaid these 
plots on U.S. Geological Survey topographic 
maps and compared them with aerial photo- 
graphs to identify use areas. Stands identified 
from the telemetry plots with only 1 or 2 telem- 
etry locations were dropped from the analysis 
for having too few locations to establish an owl- 
use preference. 

In this study, the experimental unit is the 
forest stand. The boundary of each area or stand 
containing telemetry points was defined by the 
adjacent borders of clearcuts or a distinct change 
in vegetation structure resulting from a distur- 
bance (Fig. 1). In the study areas, logging and 
wind disturbance divided the landscape into dis- 
crete stands. Within each stand, the forest seral 

stage and disturbance history were relatively 
homogenous. 

When using PLR, the study design and sam- 

pling scheme should be identified so that the 
appropriate likelihood functions can be selected 
(Hosmer and Lemeshow 1989). This example is 
a cohort study where observations (i.e. teleme- 
try) are independent and data are collected from 
a sample of owl use stands (Chambless and Boyle 
1985). All stands with radiotelemetry locations 
were stratified by size because the number of 
telemetry locations in a stand can be influenced 

by stand size as well as microhabitat quality. To 
minimize this confounding effect, only large 
stands between 40 and 80 ha in which prey 
populations could not be quickly depleted were 
included in the analysis. 

Forty-one stands with 3 or more telemetry 
locations were identified. For each stand within 
an owl pair's home range, the percentage of total 
telemetry points occurring within the stand was 
calculated. This value gave a relative measure 
of each stand's use by the resident owl pair. For 
example, a stand with 10 telemetry locations 
used by an owl pair with 125 total locations 
would have an 8% value. 

Classification of use-intensity levels was based 
on a frequency histogram of sample stands iden- 
tified by their percentage of the total telemetry 
points within each owl pair's home range (Fig. 
2). The frequency distribution displays patterns 
observed in each owl pair's map of telemetry 
locations (Fig. 1). Within each home range, owl 
use is concentrated in a few core stands (high- 
use stands), with lighter use of some stands fur- 
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ther from the core area (medium-use stands) 
and infrequent but repeated use of several stands 
furthest from the core use areas (low-use stands). 
The histogram display was categorized into these 
3 use-levels based on the clumping patterns in 
the frequency distribution. Stands with more 
than 2 telemetry locations and 1-2% of total owl 
pair telemetry points were assigned a low-use 
intensity (value 1). Stands with 3-10% of total 
telemetry points were given a medium-use in- 
tensity value (2) and stands with greater than 
10% were assigned a high-use value (3). 

Study Areas and Microhabitat 
Measurements 

Sample stands were concentrated in 3 locales 
of Washington State: 2 areas on the west side of 
the Olympic Peninsula near Lake Quinnault and 
the town of Forks, and 1 in the North Cascade 

Range near Mt. Baker. The Olympic Peninsula 
sites are located in the Picea sitchensis and Tsu- 

ga heterophylla zones (Franklin and Dyrness 
1988) at an elevation of 200 to 700 m. The North 
Cascade sites are at an elevation of 200 to 800 
m and within the Tsuga heterophylla zone 
(Franklin and Dyrness 1988) found in the wet, 
western foothills of the Cascade Range. All stands 
were either old-growth (age >250 yr) or mature 
forests (age >70 yr) with a significant legacy of 

old-growth structure surviving from early cen- 

tury wind disturbance (Henderson et al. 1989). 
Sixty-five measures of forest structure were 

collected in a 3-year study that measured 176 

plots in 41 stands with different owl-use inten- 

sity levels (North 1993). For this demonstration, 
1 microhabitat measurement was selected from 
each of 5 general categories of site character- 
istics: trees, snags, logs, canopy dimensions, and 
site physiognomy. Stand structures were select- 
ed that might influence the density of northern 

flying squirrels, or affect the owl's foraging suc- 
cess: the density of tall trees (TALTRDE) as it 
represents an increase in the height of the can- 

opy environment and foliage layering, condi- 
tions which may influence owl movement and 

foraging success (Carey 1985); snag volume 
(SNVOL) because snags often provide cavities 
required by flying squirrels (Mowrey and Za- 
sada 1984, Carey 1991); log volume (LGVOL) 
because large logs may provide runway struc- 
tures for prey species (Maser and Trappe 1984); 
tree height class diversity (HCLBP) because 

multi-layer canopies may influence foraging 
success (Forsman et al. 1984); and the distance 
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Fig. 2. A histogram of 41 stands used by spotted owls. Owl 
use is measured as the percentage of total telemetry locations 
of an owl pair that occur in the stand. A total of 11 owl pairs 
are represented. Stands with 1-2% of the total telemetry lo- 
cations for their owl pair were classed as low-use, stands with 
3-10% as medium-use, and more than 10% as high-use. The 
vertical lines indicate the boundaries for each use-intensity lev- 
el. 

to water (WATER) which may influence forage 
site selection (Barrows and Barrows 1978, Solis 
and Gutierrez 1990). 

RESULTS 
Changes in the use-intensity levels for the 41 

selected stands were analyzed against the 5 se- 
lected microhabitat measures to investigate their 

potential importance to owl site-selection. Mod- 
el investigations used the lrm (ordinal logistic 
regression) function in the Design Library of 
Functions (Harrell 1994) in S-Plus (Stat. Sci. 
1993). A forward approach was used in model 
selection. In the first step, use-intensity class was 

regressed against each of the 5 variables indi- 

vidually. The most important variable (i.e., with 
the highest change in deviance) was then in- 
cluded in the model if significant, and the pro- 
cedure repeated (Table 1). Each variable or in- 
teraction term not already in the model was 
added individually and its importance mea- 
sured by the change in deviance. With PLR, 
independent variables can appear nonlinearly 
(e.g., higher powers, logs), but graphical explo- 
rations of the microhabitat data indicated a lin- 
ear model was appropriate for our data. 

The final model selected was: 

logit (use-intensity level i) = a, + Al x SNVOL 
+ 02 

x HCLBP 

Interaction among the selected variables, 
SNVOL and HCLBP, was explored with the 
likelihood-ratio test, but the model was not sig- 
nificantly improved. 

n wi,-,lm,-,-,-,-,-, 1- ,-,-,W,-,w,-,-, ,-,-,w, ,-,-,-, ,s, ,-, I ,-,,11 _ II II lB II II II II II II I 
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Table 1. Forward Model Selection for the PLR model of northern spotted owl demonstration data. 

Current model SNVOL HCLBP LGVOL TALTRDE WATER 

Intercepts 
only + 44.31a*b 35.37* 3.95* 0.07 0.83 

Intercepts + 
SNVOL + 697* 2.18 0.09 0.24 

Intercepts + 
SNVOL + 1.78 2.46 0.86 
HCLBP + 

a Cells display the change in deviance, (-2-log likelihood), due to adding the selected term to the current model. All terms contribute 1 degree 
of freedom, therefore the change in deviance should follow a Chi-square distribution with 1 df under the null hypothesis that the selected coefficient 
is zero. 

b A significance level of a = 0.10 was used as the criterion for adding terms. Significant terms are denoted by *. 

A graph of the sample stands by snag volume 
and height class diversity indicate a general in- 
crease in the level of owl use with the selected 
variables (Fig. 3). 

Multicollinearity among the selected vari- 
ables was a concern in model building as many 
forest structures, such as the size of trees, snags, 
and logs are highly correlated with stand age 
and disturbance history. Multicollinearity arises 
when independent variables are highly associ- 
ated, making it impossible to accurately distin- 
guish their individual contributions to the mod- 
el. The final selected model's variance inflation 
factor (VIF) of 13.5 indicates that multicolli- 
nearity is a concern (Weisberg 1985, Wetherill 
et al. 1986) and may have affected the accuracy 
of the parameter estimates. However, the like- 
lihood ratios from the model selection process 
(Table 1) support the model's variable selection. 
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Fig. 3. Forty-one owl-use stands plotted against their mea- 
sures of the variables selected by the PLR analysis. The graph 
also shows the jackknife allocation error for the stands by their 
use-intensity level: stands which the model correctly predict 
are shown by their use value (1 for low, 2 for medium, and 3 
for high), under predictions by a "-" and over predictions by a 
"+". Note that although 1 stand has a high snag volume value, 
it is well within the high-use section and does not distort the 
PLR classification equations. 

Model Goodness-of-Fit 
The fit of a PLR model can be assessed with 

both summary measures and cross-validation 
techniques. The lrm function in S-Plus (Stat. Sci. 
1993) calculated summary measures of the or- 
dinal association of the final model: Somers Dx, 
= 0.892 and Goodman and Kruskal's Gamma = 
0.914. Both statistics measure the rank corre- 
lation between the model-derived linear pre- 
dictor portion of the logit, (31 x SNVOL + 32 
x HCLBP), for an observation and the actual 
use-intensity class (Agresti 1990, Harrell 1994). 
The D,y and Gamma values, which can range 
from -1 to 1, indicate the model is a good fit 
for the data. 

The final step in the analysis was an evalua- 
tion of the model's classification capabilities us- 
ing a jackknife procedure. Each of the 41 stands 
was removed from the dataset, 1 at a time, and 
classified using PLR equations derived inde- 
pendently from the data on the remaining 40 
stands. The process was repeated for all 41 stands. 

The percentage of correct classifications rang- 
es from 61.5 to 91 (Table 2). Although 15.4, 
25.7, and 23.1 of the stands were misclassified 
in the low-, medium- and high-use categories, 
none of the misclassifications were off by more 
than 1 use-intensity level. 

Although only a small set of variables were 
analyzed for the purpose of demonstration, the 
proposed technique developed a model with 
good predictors of the relative use of microhab- 
itat sites. We believe the model's strong results 
are due to the careful selection of microhabitat 
measures and the technique's use of PLR anal- 
ysis of use-only sites. 

This demonstration of radiotelemetry data and 
PLR to analyze microhabitat provides a model 
of variables associated with spotted owl foraging 
in Washington State. We caution, however, that 
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this demonstration used a limited number of 
microhabitat measures and does not attempt to 
explain the spotted owl's association with old- 
growth forests or explore factors other than the 
selected variables which may influence micro- 
habitat selection. 

DISCUSSION 

Identifying important structures of an ani- 
mal's microhabitat can be difficult because the 
preferred macrohabitat may differ in a variety 
of ways from available, but avoided, areas. For 
example, there are numerous, complex struc- 
tural characteristics which distinguish old- 
growth from younger-age forests. These struc- 
tural characteristics develop over time and in 
response to disturbances. Landscapes with a mo- 
saic of seral stages and different disturbance his- 
tories will have an array of potential habitat 
sites, each with a different habitat value. In this 
situation, a microhabitat analysis that uses a 
presence/absence comparison simplifies the 
classification of suitability habitat sites. Fur- 
thermore, when use and nonuse sites substan- 
tially differ, the presence/absence comparison 
may not be able to tease apart the complex 
structure of the macrohabitat to identify the 
particular features which are important to the 
microhabitat. 

While the use of radiotelemetry data avoids 
the problematic use of absence sites, it is still 
only an approximation of the relative habitat 
value of different sites to a study animal. The 
technique assumes that telemetry locations rep- 
resent an animal's preference for different sites 
and by inference, reflect their microhabitat val- 
ue. Assigning sites use values based on radio- 
telemetry points treats all locations with equal 
importance. However, some locations may be 
visited only briefly, yet be important to an an- 
imal's survival. Telemetry data will only be rep- 
resentative of use preferences for species with 
site fidelity and whose length of time at different 
sites reflects their relative habitat value. For in- 
stance, visitation time will not be a good mea- 
sure of habitat suitability for animals that con- 
tinue to forage in 1 area until prey populations 
are depleted. 

The number of telemetry locations for each 
study animal should be large and of similar size. 
The probabilities of selecting any 1 stand will 
only be comparable between different animals 
with large, representative samples of use-inten- 
sity and fairly equal numbers of locations be- 

Table 2. Jackknife classification errors for the PLR model of 
the northern spotted owl demonstration data. 

Use-intensity level 

Observed level: 1P 
Observed level: 2 
Observed level: 3 

Predicted 
level: 1 

91%b 

15.4% 
0% 

Predicted 
level: 2 

9% 
61.5% 
16.7% 

Predicted 
level: 3 

0% 
23.1% 
83.3% 

a The dataset contained 11 stands classified as level 1 (low-use), 13 
stands classified as level 2 (medium-use), and 18 stands classified as level 
3 (high-use). 

b Cells display the percentage of observations classified into each use- 
intensity level given the observed use-intensity level. 

tween animals. The method requires large te- 
lemetry datasets for several animals, as location 
screening can reduce the analysis sample to a 
few stands per animal. As the method models 
the use intensity of a sample population, sample 
size should include several animals, each with 
a range of use-intensity stands. Although the 
final number of stands may be small, high model 
classification accuracy can be attained as each 
stand's use-intensity is calculated from a large 
sample of the animal's use patterns (see Mlad- 
enoff et al. 1995 for a similar approach). 

To improve the power of the predictive mod- 
el, the distribution of telemetry location per- 
centages should be categorized parsimoniously. 
For a given sample size and significance level, 
power is improved when the effect being mod- 
eled is easier to detect (Cohen 1988). Therefore 
as the number of use-intensity classes increases, 
the model will be less accurate at predicting 
subtle differences in microhabitat use. 

Use-intensity classes can be defined by gaps 
or rapid declines in the number of stands for a 
range of consecutive telemetry percentages (Fig. 
2). For some species, however, definition of use- 
intensity classes may be difficult when there is 
no pattern to the histogram of site frequencies 
by telemetry percentage or little is known about 
the species behavior. In these cases observations 
from field biologists or behavior patterns seen 
in long-term telemetry collections may help 
identify use-intensity classes. Within these con- 
ditions, we believe telemetry is the best ap- 
proximation of animal use-intensity presently 
available as it provides a large temporal and 
spatial sample of use patterns. 

The presented method may also have appli- 
cations for forage selection studies. Although we 
have focused on microhabitat structure, forage 
patterns could be modeled using animal selec- 
tion of different foraging items or areas. A use 
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measure other than radiotelemetry, such as 

grazing intensity or pellet production, could be 
categorized into ordinal levels of selection and 
modeled with the PLR analysis. With a gradient 
analysis of selected items or areas only, this tech- 
nique might improve the power and precision 
of foraging models used by wildlife managers 
and land managers. 

The advantage of the proposed technique is 
its ability to establish a relative measure of use- 
intensity, eliminating the need to identify ab- 
sence sites. Polytomous logistic regression can 
model the ranked order of the use sites, provid- 
ing a finer analysis of microhabitat variables 
within the used macrohabitat. Ordinal PLR al- 
lows both continuous and categorical microhab- 
itat measures, does not require a constant co- 
variance structure across all use levels, and re- 
tains and incorporates the information in the 
ranking of the use-intensity levels. When radio- 
telemetry information for a species with site 
fidelity is available, this technique can improve 
on microhabitat analyses which use DFA or 
presence/absence sampling. 
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A COMPARISON OF CONFIDENCE INTERVAL METHODS 
FOR HABITAT USE-AVAILABILITY STUDIES 

STEVE CHERRY, Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA 

Abstract: Wildlife managers routinely compute sets of simultaneous confidence intervals to estimate the 
actual proportion of use of a set of k habitat types. Confidence intervals are determined by assuming that 
the counts of observed use are from k binomial populations. A set of k intervals is constructed from a large 
sample approximation for a confidence interval for a single binomial proportion. The simultaneous confidence 
level is controlled by use of the Bonferroni inequality. The coverage probability of these intervals can be 
less than the nominal (1 - a) 100% level. This paper presents results of a simulation study comparing the 
performance of these intervals with 3 alternatives; the usual method with a continuity correction factor, and 
2 methods of computing confidence intervals for multinomial proportions. The 2 latter methods are superior 
and should be used in place of the binomial intervals. 
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in a Chi-square goodness-of-fit test. Expected 
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