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Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes
understanding the factors that strongly affect landscape fire patterns a management priority for optimiz-
ing treatment location. We compared the influence of variations in the local environment on burn sever-
ity patterns on the large 2013 Rim fire that burned under extreme drought with those of previous smaller
fires for a study area in the Sierra Nevada, California, USA. Although much of the Rim fire burned during
plume-dominated conditions resulting in large high-severity patches, our study area burned under
milder fire weather resulting in a mix of fire severities. In our study area the Rim fire produced a higher
proportion of moderate- and high-severity effects than occurred in previous fires. Random forest model-
ing explained up to 63% of the Rim fire burn variance using seven predictors: time since previous fire,
actual evapotranspiration (AET), climatic water deficit (Deficit), previous maximum burn severity, burn-
ing index, slope position, and solar radiation. Models using only a subset of biophysical predictors (AET,
Deficit, slope position and steepness, and solar radiation) explained 55% of the Rim fire and 58% of the
maximum fire burn severity of previous fires. The relationship of burn severity to patterns of AET, how-
ever, reversed for the Rim fire (positive) compared to earlier fires (negative). Measurements of pre-Rim
fire forest structure from LiDAR did not improve our ability to explain burn severity patterns. We found
that accounting for spatial autocorrelation in burn severity and biophysical environment was important
to model quality and stability. Our results suggest water balance and topography can help predict likely
burn severity patterns under moderate climate and fire weather conditions, providing managers with
general guidance for prioritizing fuel treatments and identifying where fire is less likely to burn with
higher severities even for locations with higher forest density and canopy cover.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

In western North America, the frequency and severity of large
wildfires is increasing (Gillett et al., 2004; Miller and Safford,
2012; Morgan et al., 2008; Westerling et al., 2006). In an effort to
reduce the effects of this trend on fire-prone forests, managers pri-
oritize areas for treatment (North et al., 2009; Hessburg et al.,
2015), often based on fire model outputs (i.e., Finney, 2005). While
management activities may have limited effect on large wildfires
occurring during extreme fire weather, wildfires burning under
more moderate weather conditions often produce a mix of burn
severities where pre-fire management treatments may affect burn
patterns. Previous work has shown that mixed-severity burn pat-
terns are influenced by the local biophysical environment
(Holden et al., 2009; Kane et al., 2015; Miller and Urban, 1999,
2000), but few studies have examined this in combination with
pre-burn forest structure and previous fire events.

Historical reconstructions of fires (Heyerdahl et al., 2001; Taylor
and Skinner, 1998) and analyses of recent fires (Cansler and
McKenzie, 2014; Dillon et al., 2011; Falk et al., 2007; Kane et al.,
2015; Parks et al., 2015, 2011; Prichard and Kennedy, 2014) have
demonstrated the importance of both top-down and bottom-up
controls (Falk et al., 2007; Heyerdahl et al., 2001; Lertzman and
Fall, 1998; Perry et al., 2011). Top-down controls such as decadal,
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annual, and daily variation in precipitation and temperature influ-
ence fire similarly over large areas (Turner and Romme, 1994;
McKenzie and Kennedy, 2011). Bottom-up controls such as topog-
raphy create local patterns of climate and vegetation structure that
influence fire by affecting fuel loading, moisture, and fire behavior
(Turner and Romme, 1994; McKenzie and Kennedy, 2011). Past
fires also create bottom-up controls by locally altering fuels and
forest composition and structure (Collins et al., 2009; Larson
et al., 2013; Peterson, 2002).

In general, bottom-up controls exert stronger influence during
cooler and wetter years when fires generally burn at lower sever-
ities, while top-down controls may exert stronger influence during
hotter and dryer years (Bessie and Johnson, 1995; Dillon et al.,
2011; Parks et al., 2014a, 2014b; Turner and Romme, 1994). How-
ever, even in years with strong drought and warmer temperatures,
the influence of bottom up controls can still be seen in some land-
scape burn patterns (Bigler et al., 2005; Cansler and McKenzie,
2014; Lee et al., 2009; Prichard and Kennedy, 2014; Wimberly
et al., 2009).

Recent large fires in Sierra Nevada mixed conifer forests have
resulted in larger patches and a higher proportion of high-
severity effects than occurred historically or in contemporary
smaller fires (Mallek et al., 2013; Miller and Safford, 2012; Miller
et al., 2009a; van de Water and Safford, 2011). The large 2013
Rim fire (104,131 ha) occurred during an extreme drought and
burned partially under extreme (>98 percentile) fire weather.
However, portions of the fire burned under milder weather
Fig. 1. Map of study area showing location within the state of California, USA (top inse
locations within the LiDAR acquisition boundary that were burned in the Rim fire. Burn s
Miller and Thode (2007): Enhanced greenness, 6�150; no change detected, �150 to 68
producing mixed-severity burn patterns for an area that also had
been subject to a number of previous smaller fires. These previous
fires allowed us to compare the controls on these fires to see if the
controls for a large fire (the Rim fire) differed. The availability of
pre-fire airborne LiDAR data over a portion of the fire allowed us
to examine whether high-fidelity forest structure measurements
from LiDAR would improve our ability to explain burn severity
patterns.

Specifically, we examined three questions for our study area:

1. How well do local variations in climate, topography, and prior
fire history explain mixed-severity burn patterns?

2. How do the effects of these controls differ for the pre-Rim fires
and for the Rim fire?

3. Do pre-fire LiDAR measurements improve our ability to explain
the variation?

2. Methods

2.1. Study area

Yosemite National Park (3027 km2) lies in the central Sierra
Nevada, California, USA (Fig. 1). This area has a Mediterranean cli-
mate with precipitation ranging from 800 mm to 1720 mm (Lutz
et al., 2010) mostly occurring as snow during the winter. As eleva-
tion increases, mean precipitation increases, mean temperature
rt) and within Yosemite National Park (bottom insert). Our study area consists of
everity for the Rim fire shown using classified RdNBR values with breakpoints from
; low severity, 69–315; moderate severity, 316–640; high severity, P641.
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decreases, frequency of fires decreases, and mean burn intensity
decreases (Lutz et al., 2010; Thode et al., 2011).

The park has multiple wildfires each year, and since 1972 many
lightning-ignited fires have been allowed to burn (van
Wagtendonk, 2007; van Wagtendonk and Lutz, 2007). This has
resulted in most fires burning under moderate weather conditions
resulting in patterns that may emulate the historic mixed-severity
fire regime (Collins and Stephens, 2007; Sugihara et al., 2006a; van
Wagtendonk and Lutz, 2007; van Wagtendonk, 2007). Large areas
of the park have progressed towards a self-regulated fire regime
(Mallek et al., 2013; van Wagtendonk, 2007; Miller et al., 2012a)
with reduced fuel loads and continuity resulting in a mix of burn
severities. These severities are broadly characterized as low
(patches with <25% overstory tree mortality); moderate (patches
with 25–75% overstory mortality); and high (patches with >75%
overstory mortality) (Sugihara et al., 2006b).

To assess pre-fire forest structure we used a 5091 ha area of a
2010 LiDAR airborne acquisition that lay within the Rim fire
perimeter in Yosemite spanning an elevation of 1347–2391 m. This
area was a portion of the study area for three previous studies: the
first two examined the effects of fire on forest structure using
LiDAR data (Kane et al., 2014, 2013) and the second examined
the effects of the biophysical environment on burn severity and
forest structure (Kane et al., 2015).

We identified forested areas within the study area based on the
1935 and 1997 park vegetation maps (Keeler-Wolf et al., 2012;
Walker, 2000; Wieslander, 1935). We excluded areas not forested
Fig. 2. Geographic variation in Rim fire estimated burn severity (RdNBR) and burn severi
fire weather, the maximum RdNBR for fires prior to the Rim fire, and years since the previ
shown using classified RdNBR values with breakpoints from Miller and Thode (2007): En
moderate severity, 316–640; high severity, P641.
in 1937 or 1997, but included areas forested in 1935 but not in
1997 based on the assumption that fire had caused a shift in vege-
tation type. The final study area was 4461 ha. For details on forest
structure and fire history in this area see Kane et al. (2015, 2014,
2013).

Four forest types are common in the study area: ponderosa pine
(Pinus ponderosa), sugar pine-white fir (Pinus lambertiana–Abies
concolor), Jeffrey pine (Pinus jeffreyi), and red fir (Abies magnifica).
Historically, most of these forest types were dominated by tree
species with a high fire tolerance such as ponderosa pine, sugar
pine, and Jeffrey pine (van Wagtendonk and Fites-Kaufman,
2006). Managers suppressed fires from the early 1900s to the early
1970s. This allowed tree species such as white fir that have lower
fire tolerance when small to become established, often creating
nearly continuous canopy forests with significant fuel laddering
(Beaty and Taylor, 2008; Collins et al., 2011; Scholl and Taylor,
2010). When low- and mixed-severity fires burn through these for-
ests today, ladder fuels tend to be removed, overall canopy cover is
reduced, and patterns of tree clumps and openings (sensu Larson
and Churchill, 2012; Churchill et al., 2013) can emerge (Kane
et al., 2014, 2013).

2.2. Rim fire

The Rim fire started on 17 August 2013 and was not fully con-
tained until 23 October 2013 after burning 104,131 ha of the
Stanislaus National Forest and Yosemite National Park. It burned
ty related predictors. Our modeling found that the burning index, a daily estimate of
ous Rim fire were key predictors of the Rim fire burn severity patterns. Burn severity
hanced greenness, 6�150; no change detected, �150 to 68; low severity, 69–315;
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during the second year of the most extreme drought in the histor-
ical record and was the largest recorded fire in the Sierra Nevada.
The Rim fire burned our study area from 26 August to 20 Septem-
ber 2013 and produced a mixture of burn severities (Fig. 2). Our
study area burned under relatively moderate weather conditions
with burning index (BI; Bradshaw et al., 1983) values predomi-
nantly in the 65–82 range, compared to the August 22 and 23
plume-dominated conditions (BI > 75) that resulted in large areas
of high-severity fire effects (Lydersen et al., 2014). The southern
edge of our study area was burned during fire suppression efforts
by a management-ignited backfire, which we were unable to dis-
tinguish from areas burned by the Rim fire. Seventy percent of
our study area had burned at least once between 1984 and 2012,
allowing us to study the effects of prior fire history on the Rim fire.

2.3. Response and predictors to model burn severity

We used estimated burn severity measurements derived from
Landsat images as our responses. We selected a number of predic-
tors to test based on the work of Lydersen et al. (2014) and Kane
et al. (2015) (Table 1).

2.3.1. Fire related metrics
We mapped the history of fire locations using several sources

(Fig. 2). For 1930–1983 fires, we used park records of fire perime-
ters, excluding these areas because they lacked severity informa-
tion. For 1984–2010 fires we used the Lutz et al. (2011) burn
severity atlas that mapped fires P40 ha. For 2011–2013 fires, we
used fire maps from the MTBS project that mapped fires
P400 ha (Eidenshink et al., 2007).

One-year post-fire burn severities for fires from 1984 to 2013
(the earliest date for data from the Landsat ThematicMapper instru-
ment)were calculated using the Relativized differencedNormalized
Table 1
Response and predictor metrics used in this study to model Rim fire burn severity. Rim fire R
used as predictors; pre-Rim maximum RdNBR was also used as a predictor for Rim fire RdN
the table. All variables were mapped using 30 m (0.09 ha) grid cells although some were ca
in parentheses) or in the case of AET and Deficit resampled from the original 270 m raste

Rim fire Source

Rim RdNBR (30 m) MTBSa

Fire history (30 m)
Time since previous fire Park reco
Maximum pre-Rim RdNBR (30 m) Lutz et a

MTBSa

Fire weather (daily)
Burning index Lydersen
Energy release component Lydersen

Water balance (270 m/30 year averages)
Actual evapotranspiration (AET) Flint et a
Climatic water deficit (Deficit) Flint et a

Local topography (30, 90, 270 m)
Slope 1 m LiDA
Solar radiation index (SRI) 1 m LiDA
Aspect 1 m LiDA

Slope position (100, 250, 500, 1000, 2000 m)
Topographic position index (TPI) 1 m LiDA

LiDAR forest structure (30 m)
Cover >2, 1–2, 2–4, 4–8, 8–16, 16–32, >32 m LiDAR
>2 m return height percentiles: 10th, 25th, 50th, 75th, 95th LiDAR
Standard deviation return heights >2 m LiDAR
Rumple (canopy surface rugosity) LiDAR

Parsimonious predictors: AET, Deficit, pre-Rim max. RdNBR, time since previous fire, slop
Biophysical core predictors: AET, Deficit, slope position (500 and 1000 m), solar radiation

a Monitoring Trends in Burn Severity.
b United States Geological Survey.
Burn Ratio, RdNBR (Miller and Thode, 2007; Miller et al., 2009b)
available from theMTBS project. RdNBR estimates the effects of fire
on the abiotic environment andvegetation, including the immediate
impacts of the fire and ecosystem responses up to a year post-fire
(Miller and Thode, 2007; Sugihara et al., 2006a, 2006b). Higher
RdNBR values signify a decrease in photosynthetic materials and
surface materials holding water and an increase in ash, carbon,
and exposed soil. RdNBR values have been found to correlate with
field-measured burn severities (Cansler and McKenzie, 2012;
Soverel et al., 2010; Thode, 2005; Thode et al., 2011).

For the Rim fire, we used the continuous RdNBR values as the
response. For interpretability, however, we show RdNBR in figures
as classified burn severities in figures using breakpoints from
Miller and Thode (2007): Enhanced greenness, 6�150; no change
detected, �150 to 68; low severity, 69–315; moderate severity,
316–640; high severity, P641. To characterize fire history in each
Landsat pixel prior to the Rim fire, we used the maximum pre-Rim
RdNBR value at each location and the number of years since the
last fire.

We used two predictors that incorporated measures of daily
weather as proxies for the Rim fire weather based on daily fire pro-
gression maps (Collins et al., 2009; Lydersen et al., 2014). The
Energy Release Component (ERC) index is a measurement of fuel
moisture and is calculated based on temperature, relative humid-
ity, and related fuel moisture for 1, 10, 100, and 1000 h dead fuels,
and live fuels. The Burning Index (BI) is calculated using the ERC
and also includes the ‘‘spread component” which includes wind
speed, slope, and live fine and woody (twigs) fuel moisture
(Bradshaw et al., 1983). We used values calculated for these indices
by Lydersen et al. (2014) using weather data from the Crane Flat
weather station (latitude: 37.8, longitude: �119.88, elevation:
2022 m) located on the southern edge of the fire and our study
area.
dNBR and pre-Rim maximum RdNBR were used as responses; all other variables were
BR. Predictors used in the parsimonious and biophysical core subsets are shown below
lculated using larger windows around each grid cell (calculation window sizes shown
rs.

Units/interpretation

Relative burn severity

rds Years
l. 2011 Relative burn severity

et al. (2014) Relative index
et al. (2014) Relative index

l. (2013) mm water
l. (2013) mm water

R DTM & 10 m USGSb DEM Degrees
R DTM & 10 m USGSb DEM Relative index
R DTM & 10 m USGSb DEM Cosine (south = 0)

R DTM & 10 m USGSb DEM Jenness, 2006 Relative index

Percent
Meters
Meters
Ratio

e position (1000 m), solar radiation index (270 m), slope (270 m), burning index.
index (270 m), slope (270 m).



Fig. 3. Geographic variation in biophysical environmental conditions that our modeling found to be key predictors for the burn severity patterns for both the Rim fire and
previous fires. Actual evapotranspiration (AET) and climatic water deficit (Deficit) are surrogates for patterns of local potential productivity and fuel accumulation and for fuel
moisture. The solar radiation index integrates slope, aspect, and latitude into a measure of relative solar exposure based on topography. The Jenness Topographic Position
Index (TPI) indicates relative slope positions.
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2.3.2. Pre-Rim fire LiDAR data and forest structure metrics
LiDAR data were collected by Watershed Sciences, Inc.

(Corvallis, OR) using dual mounted Leica ALS50 Phase II
instruments. Data were collected on 21 and 22 July 2010 with an
average pulse density of 10.9 pulses m�2 with up to four returns
per pulse. Watershed Sciences created a 1 m resolution
LiDAR-derived digital terrain model (DTM) using the TerraScan
(v.10.009 and v.11.009) and TerraModeler (v.10.004 and
v.11.006) software packages (Terrasolid, Helsinki, Finland).

We processed the LiDAR data using the USDA Forest Service’s
Fusion software package (beta version derived from version 3.4.2,
http://forsys.cfr.washington.edu/fusion.html) (McGaughey, 2014).
We produced a set of forest structure metrics using a 30 m
(0.09 ha) grid. Metrics for the distribution of the canopy profile
were calculated as the heights at which a percentile of returns
(e.g., 25th percentile height) >2 m occurred. We measured the
structural heterogeneity of the forest canopy by calculating the
standard deviation of return heights >2 m and with a measure of
canopy rugosity, rumple, calculated from a canopy surface model
(CSM) created using the maximum return height within each
1-m grid cell smoothed with a 3 � 3 low pass filter. Canopy cover
was calculated as the percentage of returns in a stratum divided by
the number of returns in that stratum and all lower strata for strata
>2, 1–2, 2–4, 4–8, 8–16, 16–32, and >32 m.

2.3.3. Water balance metrics
In mountainous areas, potential fuel biomass and dryness are

related to elevation gradients associated with differences in
precipitation and temperature. While many studies have used ele-
vation as a predictor (Holden et al., 2009; Prichard and Kennedy,
2014), several have used water balance to integrate the simultane-
ous availability of water and energy (Abatzoglou and Kolden, 2013;
Kane et al., 2015; Littell and Gwozdz, 2011; Parks et al., 2014a,
2014b).

The theoretical limit to plant photosynthesis is correlated with
potential evapotranspiration (PET), which is based on available
energy. However, photosynthesis is limited by water availability,
so the actual evapotranspiration (AET) is less than the PET when
not enough water is available to meet evaporative and transpira-
tion demands. The difference between PET and AET is the climatic
water deficit (Deficit, sensu Stephenson (1998)), which estimates
vegetation stress due to lack of water. AET is associated with
potential biomass and hence potential surface fuel deposition
while Deficit is correlated with fuel moisture and hence fire behav-
ior (Kane et al., 2015; Miller and Urban, 1999). AET and Deficit are
correlated to the elevation gradient through patterns of precipita-
tion (higher elevations generally receive more) and temperature
(higher elevations are colder) leading to water-limited forests at
lower elevations and energy-limited forests at higher elevations
(Das et al., 2013; Greenberg et al., 2009).

We used AET and Deficit 270 m scale maps resampled to 30 m
from the 2011 California Basin Model (BCM) (Flint and Flint,
2007; Flint et al., 2013, http://climate.calcommons.org/dataset/
10) that used a Priestley–Taylor (Priestley and Taylor, 1972) PET
model with a Thornthwaite–Mather (Thornthwaite and Mather,
1955) style AET and deficit model (Fig. 3).

http://forsys.cfr.washington.edu/fusion.html
http://climate.calcommons.org/dataset/10
http://climate.calcommons.org/dataset/10


Fig. 4. Proportion of study area that burned at different RdNBR classified burn
severities for our study area in the 2013 Rim fire and pre-Rim fires from 1984 and
2012. Burn severity shown using classified RdNBR values with breakpoints from
Miller and Thode (2007): Enhanced greenness, 6�150; no change detected, �150 to
68; low severity, 69–315; moderate severity, 316–640; high severity, P641.

Fig. 5. Variance explained for the 2013 Rim fire burn severity (top) and pre-Rim
fires (bottom) using different categories of predictors for different sample spacings.
Numbers above each bar show variance explained for a sample spacing 45 m.
Predictors within each category are listed in Table 1.
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2.3.4. Topographic metrics
We evaluated the effects of topography on burn severity using

several metrics. Topographic metrics are calculated based on ter-
rain within a given area. We could not know a priori what scales
would best correlate with fire behavior as measured by burn sever-
ity so we calculated each metric at multiple scales. The calculations
were done using a moving window analysis. For example, starting
with the center point of each grid cell, we measured slope at scales
of 30 m, 90 m, and 270 m for the area surrounding each grid cell.
Within the area of the LiDAR acquisition, we used the LiDAR-
derived 1 m digital terrain model (DTM). To calculate these metrics
at the edge of the LiDAR extent, values from the 10 m US Geological
Survey digital elevation model were used when points in the anal-
ysis window fell outside of the LiDAR-derived DTM. Calculations
were done using a software tool that is planned for release in a
future version of the Fusion software (McGaughey, 2014).

We calculated slope, aspect, and a solar radiation index (SRI) for
scales of 30 m, 90 m, and 270 m. The software used a 3 � 3 grid of
points spaced at half the distance of the scales examined to calcu-
late the slope and aspect (Zevenbergen and Thorne, 1987). SRI dis-
tills information about slope, aspect, and latitude into a single
linear value useful for comparing relative solar radiation loads
across a study area (Fig. 3). SRI models solar radiation during the
hour surrounding noon on the equinox (Keating et al., 2007):

SRI ¼ 1þ cosðlatitudeÞ � cosðslopeÞ þ sinðlatitudeÞ
� sinðslopeÞ � cosðaspectÞ ð1Þ

where latitude and slope are in degrees and aspect is relative to
south.

We calculated slope positions using annuli of 100 m, 250 m,
500 m, 1000 m, and 2000 m radii using an algorithm that replicates
the Topographic Position Index (TPI; Jenness, 2006; Weiss, 2001)
(Fig. 3). More negative TPI values indicate a position towards a val-
ley bottom, values near zero indicate flat areas or mid-slope, and
more positive values indicate a hill or ridge top.
Preliminary analysis showed that burn severity was more
strongly correlated with slope position than with the other topo-
graphic metrics. We therefore report slope position results sepa-
rately from slope, aspect, and SRI, which are collectively referred
to as ‘local topography’.
2.4. Modeling for Rim fire burn severity

2.4.1. Random forest models
We used the random forest supervised learning algorithm

(Breiman, 2001; Cutler et al., 2007) because it can find complex
relationships between predictors and response, minimizes
overfitting of data sets, and can accept spatial autocorrelation in
predictor data (Breiman, 2001; Cutler et al., 2007). This modeling
is an extension of non-parametric classification and regression
trees (CART; Breiman et al., 1984) developed to reduce the overfit-
ting of data common with CART models. A CART model recursively
partitions observations into statistically more homogeneous
groups based on binary rule splits on the predictor variables, which
can be categorical or continuous. CART models deal effectively
with non-linear relationships between predictor and response
variables, interactions between predictors, and impose no assump-
tions on the distribution of the response or predictor variables.



Fig. 6. Partial plots showing relationships between each of the predictors in the parsimonious predictor set and the 2013 Rim fire burn severity (RdNBR) from random forest
modeling. Number within each panel shows the normalized importance of each predictor in the model (‘‘imp. =”). Variance explained by model shown as a pseudo R2 (‘‘RSQ
=”). Solid lines show trends in RdNBR in response to each predictor (left scale) while histograms show the distributions of values for each predictor (right scale). Model trends
where there are few samples at extreme values for predictors should be treated with caution. For predictors that are index values, interpretative text is included within each
panel. Relationships between each predictor and the response (RdNBR) calculated as partial dependence plots where the values for each predictor are varied throughout their
range while values for all other predictors are held to their mean values. As a result, partial dependence plots do not show interactions between predictors. Partial plots for
other sample distances shown in Appendix A.

Fig. 7. Relationships between each of the predictors in the biophysical core predictor set and the 2013 Rim fire and pre-Rim fire burn severities (RdNBR) as modeled by
random forest modeling. The key difference between the Rim fire and pre-Rim fires are in the relationships between AET burn severities. Number within each panel shows the
normalized importance of each predictor in the model (‘‘imp. =”). Variance explained by model shown as a pseudo R2 (‘‘RSQ =”). Solid lines show trends in RdNBR in response
to each predictor (left scale) while histograms show the distributions of values for each predictor (right scale). Model trends where there are few samples at extreme values
for predictors should be treated with caution. For predictors that are index values, interpretative text is included within each panel. Relationships between each predictor and
the response (RdNBR) calculated as partial dependence plots where the values for each predictor are varied throughout their range while values for all other predictors are
held to their mean values. As a result, partial dependence plots do not show interactions between predictors. Partial plots for other sample distances shown in Appendix A.
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Random forest models develop ‘‘forests” of CART trees to deal
with the overfitting common with single CART models. For each
CART model, a random portion of the data is selected to train the
model (bagging) and the remaining data are used for model valida-
tion (i.e., out-of-bag or generalization error). Random subsets of
predictors are selected at each node split to ensure that the effects
of all predictors are tested.

Variance explained is equivalent to the coefficient of determina-
tion (R2) for linear regressions and reports how well a statistical
model fits a given dataset. Random forest variance explained can
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be calculated using either the internal out-of-bag error rate, or by
predicting to a separate independent validation sample. We report
the variance explained based on internal out-of-bag error rates
after confirming that there was almost no difference between the
methods.

We report the normalized importance of each predictor to the
variance explained by a model that is calculated by randomly per-
mutating out-of-bag values for each predictor. The resulting
change in mean square error from the original out-of-bag data is
used to calculate the variable importance measure. We used partial
dependence plots (Hastie et al., 2001) to examine the relationship
of individual predictors to burn severity.

2.4.2. Models evaluated
To identify the key drivers of the Rim fire burn severity, we

selected a parsimonious subset of predictors that explained
approximately 95% or more of the variance explained by the full
set of predictors: Years since previous fire, maximum pre-Rim fire
RdNBR, AET, Deficit, BI, SRI at 270 m scale, and slope position at
1000 m scale. We selected this subset by starting with the predic-
tor reported as most influential from the run with all predictors
and then testing the addition of all remaining predictors one at a
time to see which best improved modeling results given previously
selected parsimonious predictors. We iteratively repeated this pro-
cess using previously selected predictors until no additional pre-
dictors improved variance explained by more than 2%.

We also wanted to compare the ability to explain patterns of
burn severity based only on the biophysical environment and then
also with fire history and fire weather as additional predictors. We
searched for a minimum set of biophysical predictors, and found
the same set that had been identified by Kane et al. (2015) using
similar methods to ours: AET, Deficit, slope position index at 500
and 2000 m scales, and slope and solar radiation at 270 m scales.
We ran models using this set of biophysical core predictors to
allow us to determine how much burn severity was attributable
to a set of biophysical conditions alone compared to these plus
other types of predictors. Reporting these results also allows our
results to be directly compared with those of Kane et al. (2015).

We modeled the Rim fire estimated burn severity (RdNBR)
using all predictors and separately using subsets of predictor cate-
gories: the parsimonious, biophysical core, LiDAR forest structure,
local topography, slope position, pre-Rim fire history, and water
balance predictors (Table 1). Developing multiple models allowed
us to explore the importance of different subsets of controls on
patterns of burn severity. To test whether the Rim fire interacted
differently with the landscape pattern than previous fires had,
we modeled the maximum pre-Rim fire burn severity at each loca-
tion for fires from 1984 to 2012.

2.4.3. Sample size and spatial autocorrelation
We tested for spatial autocorrelation within our data sets and

results using spatial correlograms of the Moran’s I coefficient
(Legendre and Legendre, 2012) and found that burn severity
and most of our predictors showed strong spatial autocorrelation
at scales <1000 m (Appendix A). Parametric techniques, such as
linear modeling, require that samples not be spatially autocorre-
lated. Consequences of spatial autocorrelation on parametric
models include inflated significance of predictor variable coeffi-
cients (i.e., inflated Type I error-rates), bias towards the selection
of certain environmental predictors due to their inherent spatial
structure, and ‘‘red-herrings” in the interpretation of important
drivers of ecological processes (Clifford et al., 1989; Lennon,
2000). However, implications of spatial autocorrelation on non-
parameteric models are less clear as variable importance is not
assessed based on statistical significance. We tested spatial auto-
correlation with systematic sampling using different minimum
spacing distances between samples (45 m (N = 8844), 90 m
(N = 3034), 180 m (N = 969), 360 m (N = 287), and 720 m
(N = 85). A minimum sample spacing of 45 m prevented adjacent
samples. We provide full details of our methods to test for spatial
autocorrelation in Appendix A.
3. Results

Based on our analysis of spatial autocorrelation, we found that
sample spacing distances of 45 m and 90 m and to a lesser degree
180 resulted in stable models that showed consistency between
burn severity and our predictors and differed primarily in the vari-
ance explained (Appendix A). Models generated with sample spac-
ing distances of 360 m and 720 m produced unstable sets of
parsimonious predictors between runs with same sample sets,
oscillating patterns of spatial autocorrelations in the model resid-
uals, and poor variance explained (R2 < 0.28). Models with all
tested spacing distances had some spatial autocorrelation in the
residuals, but substantially less than in the RdNBR burn severity
patterns and the predictors. We therefore report summary results
for the 45 m, 90 m, and 180 m spacing distances (Fig. 5) and more
detail for the 45 m spacing to report highest model fidelity (Figs. 6
and 7). Detailed results of our spatial autocorrelation analysis and
full results for all sample spacing distances are reported in
Appendix A.

A higher proportion of the study area burned at moderate- and
high-severity in the Rim fire than for previous fires (Fig. 4). A par-
simonious set of seven predictors (Table 1 and Figs. 5 and 6)
explained 41–63% of the variance depending on sample spacing,
the same range as for all predictors (sample spacing distances of
45 m, 90 m, and 180 m). The biophysical core predictors (Table 1
and Fig. 7) explained almost the same amount of burn severity
variance for the Rim fire and previous fires.

We found that the relationship of AET with burn severity chan-
ged between the pre-Rim fires and the Rim fire (Fig. 7). For pre-Rim
fires, higher AET values were correlated with lower burn severities
while this relationship reversed for AET with the Rim fire. Deficit as
a standalone predictor did not have a clear relationship with burn
severity for the Rim fire or previous fires and only had a clear rela-
tionship with pre-Rim burn severity at extreme Deficit values.
When Deficit was experimentally dropped from the biophysical
predictor set, burn severity variance explained dropped from 52%
to 34% for the Rim fire and from 51% to 37% for previous fires
(45 m sample spacing distance). This indicated that Deficit alone
provides some information to explain burn variance not provided
by other predictors, but Deficit influences burn severity in combi-
nation with one or more other predictors (which the partial plots
in Figs. 6 and 7 cannot show).
4. Discussion

We found that in the portion of the Rim fire examined in our
study area, a substantially larger proportion of the area burned at
moderate and high severities than for the previous smaller fires.
Variations in burn severity for both previous fires and the Rim fire
were best explained using predictors for water balance, slope posi-
tion, and local topography. For the Rim fire, also incorporating pre-
vious fire history and fire weather metrics modestly improved
results. We were surprised to find that pre-fire LiDAR measure-
ments of forest structure did not improve our ability to explain
Rim fire burn severity patterns. We discuss the implications of spa-
tial autocorrelation among fire severity, our predictors, and in our
models in Appendix A.
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4.1. Predictors of fire severity for Rim and pre-Rim fires

The proportion of our study area that burned at moderate (31%)
and high (23%) severities during the Rim fire was substantially
greater than for the maximum burn severity of previous fires
(23% and 10%, respectively) (Fig. 4). The Rim fire burned in the sec-
ond year of a severe drought with fuels likely drier than normal,
and large fires are more likely in years with low spring snow packs
(Lutz et al., 2009). This is consistent with the observation that large
fires such as the Rim fire burn at higher average severity than
smaller fires even when fire weather is not extreme (Cansler and
McKenzie, 2014; Lutz et al., 2009; Miller and Safford, 2012;
Miller et al., 2012b, 2009a; van Wagtendonk and Lutz, 2007). This
annual climate condition was likely a top-down control on Rim fire
burn severity.

Burn severity patterns appear to reflect the influence of a range
of conditions rather than dominance by any single one. In testing
the six categories of predictors, we found that the variation
explained by any single category ranged from none (local topogra-
phy) to a third (fire history) but combining predictors from across
categories improved variance explained to almost two thirds
(Fig. 5). A subset of six biophysical predictors (AET and Deficit,
slope position, slope, and solar radiation index) performed nearly
as well as all predictors (Figs. 5 and 7). Adding fire history (time
since previous fire and maximum prior burn severity (RdNBR))
and an index of daily fire weather only modestly improved results
achieved using the biophysical predictors, which supports the pre-
viously identified importance of the biophysical environment
(Miller and Urban, 1999, 2000; Kane et al., 2015).

Two other studies used pre-Rim fire field data that examined
predictors of the Rim fire’s mixed-severity burn patterns found a
similar core set of influential predictors but with some differences.
Among biophysical predictors, Lydersen et al. (2014) and Harris
and Taylor (2015) found elevation (strongly correlated with AET
and Deficit within the scale of our study area) to be a strong predic-
tor, while Harris and Taylor found slope position important (which
Lydersen et al. did not test). Our study and Harris and Taylor’s
found that time since previous fire to be an important predictor,
and Lydersen et al. found the burning index to be important but
Harris and Taylor did not. The other two studies found pre-fire
shrub cover (Lydersen and North, 2012; van Wagtendonk et al.,
2012) to be an important predictor, but the ability of LiDAR data
to reliably measure shrub cover over large areas hasn’t been
demonstrated, and we did not test this.

The predictors for previous fire history explained a third of the
Rim fire burn severity when considered alone. However, the parsi-
monious predictor set, which includes both prior fire history and
biophysical predictors, explained just 11% more of the burn sever-
ity pattern than the biophysical core subset that did not include
prior fire history predictors (45 m sample spacing) (Fig. 5). While
the behavior of mixed-severity fires is often seen to have a sub-
stantial stochastic element based on weather during the year and
days of the fire (Halofsky et al., 2011; Perry et al., 2011), much of
the past fire history in our study area appears to be correlated with
the biophysical conditions (Kane et al., 2015; Miller and Urban,
1999). As a result, prior fire history cannot be viewed as a fully
independent variable separate from the biophysical environment.
The relationship between the biophysical environment and fire
severity could be one reason why repeat fires often tend to burn
with similar burn severities at each location (Lydersen and North,
2012; van Wagtendonk et al., 2012).

We found that the relationship between burn severity and AET
changed substantially between the Rim fire and pre-Rim fires
(Fig. 7). AET is a surrogate for productivity, and therefore the
potential quantity of live fuels (Kane et al., 2015; Mu et al., 2007)
and the surface fuels that are shed from living and dead biomass
(Miller and Urban, 2000; van Wagtendonk and Moore, 2010). For
pre-Rim fires, higher AET 30-year normal values were negatively
correlated with burn severity, which is consistent with higher
AET being found in areas with increased precipitation and later
snowmelt and therefore usually having wetter fuels during the fire
season (Miller and Urban, 1999, 2000). However, for the Rim fire,
higher AET values were positively correlated with higher burn
severities. One explanation might be that the drought present dur-
ing the Rim fire dried locations that usually had higher fuel mois-
tures, and the Rim fire burned the fuel accumulations that had
built up in these areas (Miller and Urban, 2000). This would sug-
gest that at least two relationships can exist between water bal-
ance and burn severity patterns, varying with the actual climate
during the year of a fire. Schoennagel et al. (2005) found a similar
relationship in the Rocky Mountains.

Fire weather incorporates inter-annual, day to day, and minute-
to-minute variations in weather and is a major factor influencing
the frequency and severity of fires (Halofsky et al., 2011; Lutz
et al., 2009; Perry et al., 2011). The only surrogates for fire weather
available were estimates based on daily weather (BI and ERC),
which could not capture intra-day or spatial variability in weather.
We found that using our fire weather predictors only modestly
increased burn severity predictions. By the time the Rim fire
reached our study area, BI variability was limited (65–82). For
areas that burned earlier in the fire Lydersen et al. (2014) found
BI to be a more significant predictor for the Rim fire burn severity
than we did when they examined its behavior over a wider range
of burning index values for both days with plume and non-
plume dominated weather. The importance of weather, therefore,
for predicting the burn severity of a fire is likely to vary from fire
to fire and during a single fire based on the range of fire weather
experienced.

4.2. Lack of predictability from LiDAR measurements

We had hypothesized that much of the Rim fire burn severity
patterns reflect previously unmeasured patterns of surface fuels
and shrub cover. We therefore expected that high-fidelity forest
structure measurements from LiDAR at 30 m scale would more
accurately reflect local conditions than modeled water balance
estimates mapped at 270 m scale, which serve as a surrogate for
potential biomass and fuels. Similarly, we expected that measured
forest structure would more accurately reflect the effects of past
burns than the estimated burn severity from Landsat spectral mea-
surements. However, the biophysical, fire history, and fire weather
predictors used together better explained burn severity patterns
(Fig. 6).

We see two explanations for these results. First, LiDAR mea-
sures overstory forest structures that are only poorly correlated
with surface fuels (Jakubowksi et al., 2013; Keane et al., 2012a,
2012b; Lydersen et al., 2015). Second, fine-scale fuel patterns
may not predict burn severity patterns well. Lydersen et al.
(2014) and Harris and Taylor (2015) used pre-Rim fire fuel data
from plot networks covering portions of the burned area, and they
found weak relationships between pre-fire fuels and Rim fire burn
severity. Burn severity patterns vary at larger scales than the 0.1 ha
field plots used in these studies and our 0.09 ha LiDAR metric grid
cells. The larger scales represented by our biophysical predictors
may simply better match the scales at which fire behavior, the bio-
physical environment, and fuel variations correlate.

4.3. Management Implications

We found that the biophysical template and past fire history
can have a significant influence on mixed-severity burn patterns
in this large fire. Our results are consistent with the findings of
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others for fires under a variety of climatic conditions (Cansler and
McKenzie, 2014; Collins et al., 2007, 2009; Dillon et al., 2011; Gill
and Taylor, 2009; Holden et al., 2009; Kane et al., 2015; Lydersen
et al., 2014; Miller and Urban, 1999; Parks et al., 2011, 2012,
2014a, 2014b; Prichard and Kennedy, 2014; Wimberly et al., 2009).

Managers could use this knowledge to manage forested land-
scapes to promote patterns of forest structure that are likely to per-
sist through future fires and maintain key species (see also Miller
et al., 2012b; Smith et al., 2014). For example, stands of higher
canopy cover supporting sensitive species (e.g., the fisher (Martes
pennanti) and California spotted owl (Strix occidentalis occidentalis))
that are likely to experience lower fire severities (e.g., locations
with higher AET, toward valley bottoms, and burned with lower
severities previously) might be a lower priority for fuels reduction
treatments. Conversely, stands in areas more likely to burn with
higher severities (e.g., locations with lower AET, toward ridge tops,
and burned with higher severities previously) might become a pri-
ority for significant fuels reduction, or stands surrounding them
might be treated to create buffers to moderate fire severities. A
warning, however, for these general principles is that we found
likely burn severity may ‘‘flip” during the extensive drying of sev-
ere droughts, producing higher severities in areas that are normally
moister (higher AET, lower Deficit). Management strategies built
on burn severity estimates for both normal and more extreme con-
ditions will be more robust. For example, retaining or creating
some more open forest patches in settings that typically would
burn at lower severities should create more resilient landscapes.

In our study, as in others (Parks et al., 2014a, 2014b; Thompson
et al., 2007; van Wagtendonk et al., 2012) low- and high-severity
fire appears to beget more of the same severity. While the former
is desirable, if patterns of high-severity fire become entrenched,
large portions of forests may become locked into cycles of repeat
high-severity fires. To prevent this pattern, wider use of prescribed
burns and managed wildfire under moderate weather conditions
may help perpetuate variable fire effects in subsequent burns. Out-
side of National Parks and Wilderness areas, mechanical fuels
reduction may also reduce burn severity in areas that are accessi-
ble and economic for machine-based treatment (North et al.,
2015).

Improving predictive models of burn severity based on the
methods of this and related studies (e.g., Miller and Urban 1999;
Holden et al., 2009) will reduce the uncertainty and risk that man-
agers face when using both prescribed fire and managed wildfire. A
useful next step would be for researchers to develop models that
predict likely ranges of burn severity across landscapes given the
biophysical template and past fires. These model results could be
used in conjunction with process based fire spread models (e.g.
Flammap) to better identify settings that are more likely to burn
at low, moderate, or high severity under a range of climatic and fire
weather scenarios.
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Appendix A. Random forest results and spatial autocorrelation

A.1. Background

Spatial autocorrelation (SA) describes the relationship between
pairs of observations that are more similar (positive correlation) or
less similar (negative) than would be expected by random based
purely on their spatial proximity to one another (Legendre,
1993). SA is described informally by Tobler’s first law of geography
where he states ‘‘. . .near things are more related than far things”
(Tobler, 1970). Spatial autocorrelation among variables is an inher-
ent and important aspect of ecological variables responsible for
observed landscape patterns, patches, and gradients that are the
focus of much study in ecology.

The implications of SA on ecological modeling have been the
focus of debate (Dubin, 1998; Diniz-Filho et al., 2003; Dormann
et al., 2007; Hawkins et al., 2007). The presence of SA violates
the assumption of independence among observations. For para-
metric models, SA is known to narrow confidence intervals around
coefficient estimates, which can inflate their significance. However,
for nonparametric regression models, such as the random forest
model used in our study, it is less clear what the direct influences
of spatial autocorrelation are on model structure, model predic-
tions, and variable importance measures (though see, Hothorn
et al., 2011).

In this appendix, we first examine the spatial autocorrelation in
burn severity, predictors, and residuals. We then repeat key analy-
ses from our paper using several minimum sample spacing dis-
tances of 45, 90, 180, 360, and 720 m that were chosen to reduce
fine-scale spatial autocorrelation in the residuals.

We used correlograms (Moran’s I coefficient (Legendre and
Legendre, 2012)) to assess the level of SA in model prediction
residuals, Rim Fire RdNBR response variable and parsimonious
model predictor variables at sample points across a variety of dis-
tance intervals. The Moran’s I was calculated among points within
42.4 m distance classes (i.e., equal to the diagonal distance among
30 m cells (42.4, 84.9, 127.3, 169.7 m, etc.)). Correlograms were
calculated using the ncf package within the R statistical package.
Moran’s I values range from �1 (dispersed) to 1 (clustered), with
0 indicating random spatial pattern.
A.2. Spatial autocorrelation in burn severity, predictors, and residuals

Rim fire RdNBR (response) and most of our predictors showed
strong spatial autocorrelation across one to two orders of magni-
tude of spatial scales (Fig. A1). RdNBR exhibited SA mainly
between 30 and 2500 m. For distances >2500 m, RdNBR SA oscil-
lated around zero, with a slightly dispersed pattern identified
between 5000 and 12,000 m.

We found a high level of SA in the predictor variables used in
the parsimonious model (Fig. A1). With the exception of
topographic position index (TPI), positive correlations existed gen-
erally between 30 and 5000 m, after which an inhibitory SA rela-
tionship was identified. TPI exhibited a clustered pattern from 30
to 500 m. A surprising result was that the predictors ‘time-since-l
ast-fire’ and ‘Pre-Rim RdNBR’ had similar correlogram signatures
as the AET and Defiict, possibly suggesting a further link between
the biophysical environment and fire severity and frequency.

SA was identified in the out-of-bag residuals resulting from the
parsimonious random forest model for all sample spacing dis-
tances (Fig. A2). The largest positive (clumped distribution) SA
existed between 30 m and 300 m, although some positive Moran’s
I values were found at larger distance intervals. Moran’s I values
were substantially lower for model residuals compared to the
response variable Rim Fire RdNBR.



Fig. A1. Moran’s I correlogram on Rim RdNBR response variable, and predictor variables used in the parsimonious model using a sample spacing of 42 m to allow adjacent
samples. Gray bars indicate the number of unique interactions among pairs. RF model was built using 8844 random samples spaced at a minimum distance of 45 m. Note the
x-axis is in log10 distance units. Moran’s I values range from �1 (dispersed) to 1 (clustered), with 0 indicated completely random. The abbreviations are RdNBR, Relativized
differenced Normalized Burn Ratio; AET, Actual Evapotranspiration; Deficit, climatic water Deficit; BI, Burning Index; TSLF, Time Since Last Fire; Solar rad, Solar radiation
index; and TPI, Topographic Position Index.

Fig. A2. Moran’s I correlogram for out-of-bag model residuals for random forest models. Data for each model was a subsample of the full dataset based on various minimum
sample spacing distances among the points. Moderate spatial autocorrelation in the residuals was present at smaller distances for all sample spacings. Rim fire RdNBR is
included for reference. The number of comparisons in thousands shown on the right scale; as the distance between samples increased, the number of samples that could be
compared to calculate spatial autocorrelation decreased. Note the x-axis is in log10 distance units. Moran’s I values range from �1 (dispersed) to 1 (clustered), with 0
indicated completely random.
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Spatial autocorrelation in fire behavior and severity may result
for a variety of reasons. First, the influence of the underlying bio-
physical environment patterns, which itself is spatially autocorre-
lated at several spatial scales (Fig. A1), may contribute to SA in fire
severity patterns. Second, physical properties of fire spread, such
as heat transfer through convective, conductive, and radiative
forces, could contribute to similar fire behavior in neighboring loca-
tions independent of local fuels, or weather conditions. Typically,
under non-plume-dominated conditions, this would occur at smal-
ler scales than our minimum sampling spacing. And finally, fine-
scaled spatial autocorrelation in fire severity may also reflect pat-
terns of localized areas where biophysical controls are stronger or
weaker or where short-lived, highly localized variations in weather
caused fire to burn with higher or lower severity than otherwise
would be expected. A portion of the SA in our model residuals may
reflect this third effect because themodel fidelity to howactual burn
patterns changed spatially (i.e., nonstationarity in response to fine-
scaled drivers of fire severity over space and time).



Fig. A3. Partial plots showing relationships between each of the predictors in the parsimonious predictor set and the 2013 Rim fire burn severity (RdNBR) from random forest
modeling. Relationships between the predictors and RdNBR were similar and stable for sample spacing distances of 45 m (a), 90 m (b), and 180 m (c) but larger sampling
distances of 360 m (d) and 720 m (e) showed model instabilities. Number within each panel shows the normalized importance of each predictor in the model (‘‘imp. =”).
Variance explained by model shown as a pseudo R2 (‘‘RSQ =”). Solid lines show trends in RdNBR in response to each predictor (left scale) while histograms show the
distributions of values for each predictor (right scale). Model trends where there are few samples at extreme values for predictors should be treated with caution.
Relationships between each predictor and the response (RdNBR) calculated as partial dependence plots where the values for each predictor are varied throughout their range
while values for all other predictors are held to their mean values. As a result, partial dependence plots do not show interactions between predictors.
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A.3. Random forest model results: Minimum sample spacing distances

We tested a variety of minimum sampling distances to reduce
the level of spatial autocorrelation exhibited at fine scales in our
data (Diniz-Filho et al., 2003). All models tested showed some
autocorrelation in the residuals at smaller distances (Fig. A2). How-
ever, model residuals exhibited much lower spatial autocorrelation
compared to the main predictors and RdNBR.

Models with spacing of 360 m and 720 m had poor variance
explained (0.27 and 0.28, respectively) and showed oscillation in
the spatial autocorrelation of their residuals. We ran our parsimo-
nious predictor selection algorithm on each spacing sample ten
times and found that spacing of 720 m, 360 m, and to a lesser
degree 180 m were unstable – different sets of parsimonious pre-
dictors were selected with different runs even though the same
sample set was used for each spacing. This suggested that these
spacing distances were under sampling the spatial autocorrelation
present in our data. Models with minimum spacing 45 m and 90 m
did not have these problems. Models developed with sample dis-
tances 45 m, 90 m, and 180 m had consistent relationships
between burn severity and the predictors in the parsimonious
and biophysical core predictor sets (Figs. A3 and A4).

The resolution of several of the biophysical predictors AET,
Deficit, and solar radiation used in the parsimonious model was
270 m – approximately one half the distance identified for residual
autocorrelation in random forest model residuals (Fig. A2; 45 m
and 90 m models). At this scale, spatial autocorrelation in these
variables was high (Moran’s I: �0.77) and beginning to decrease
rapidly at larger distance intervals. This suggests that either a
higher-resolution biophysical variable set may provide higher fide-
lity predictions, or that finer-scale processes other than local cli-
mate may drive fire severity at these finer scales, which are
missing from the current predictor set.

Differences in variance explained in fire severity patterns
among these models may suggest that (1) closer sampling leads
to better sampling of the key variations in the biophysical
patterns within the study area, and/or (2) closer sample spacing
simply allowed the models to pattern match fine scale hetero-
geneity. The former explanation could indicate that at close sam-
ple spacing, random forest models are modeling fine-scale
ecological variance (desired), and the latter would indicate that
models are simply matching highly similar nearby conditions
(effectively overfitting; undesired). Although we cannot discount
the latter explanation, we lean toward towards the former expla-
nation because the key relationships between predictors and burn
severity remained stable across ranges of sample spacing. This
suggests that fine-scale, spatially autocorrelated, ecological infor-
mation is important to understanding the drivers of mixed-
severity burn patterns and this would be a fruitful area for future
research.



Fig. A4. Relationships between each of the predictors in the biophysical core predictor set and the 2013 Rim fire and pre-Rim fire burn severities (RdNBR) as modeled by
random forest modeling. Relationships between the predictors and RdNBR were similar and stable for sample spacing distances of 45 m (a), 90 m (b), and 180 m (c) but larger
sampling distances of 360 m (d) and 720 m (e) showed model instabilities. Number within each panel shows the normalized importance of each predictor in the model (‘‘imp.
=”). Variance explained by model shown as a pseudo R2 (‘‘RSQ =”). Solid lines show trends in RdNBR in response to each predictor (left scale) while histograms show the
distributions of values for each predictor (right scale). Model trends where there are few samples at extreme values for predictors should be treated with caution. For
predictors that are index values, interpretative text is included within each panel. Relationships between each predictor and the response (RdNBR) calculated as partial
dependence plots where the values for each predictor are varied throughout their range while values for all other predictors are held to their mean values. As a result, partial
dependence plots do not show interactions between predictors.
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Fig. A4 (continued)
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Fig. A4 (continued)
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