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A B S T R A C T

Tall trees and vertical forest structure are associated with increased productivity, biomass and wildlife habitat
quality. While climate has been widely hypothesized to control forest structure at broad scales, other variables
could be key at fine scales, and are associated with forest management. In this study we identify the environ-
mental conditions (climate, topography, soils) associated with increased tree height across spatial scales using
airborne Light Detection and Ranging (LiDAR) data to measure canopy height. The study was conducted over a
large elevational gradient from 200 to 3000m in the Sierra Nevada Mountains (CA, USA) spanning sparse oak
woodlands to closed canopy conifer forests. We developed Generalized Boosted Models (GBMs) of forest height,
ranking predictor variable importance against Maximum Canopy Height (CHMax) at six spatial scales (25, 50,
100, 250, 500, 1000m). In our study area, climate variables such as the climatic water deficit and mean annual
precipitation were more strongly correlated with CHmax (18–52% relative importance) than soil and topographic
variables, and models at intermediate (50–500m) scales explained the most variance in CHMax (R2 0.77–0.83).
Certain soil variables such as soil bulk density and pH, as well as topographic variables such as the topographic
wetness index, slope curvature and potential solar radiation, showed consistent, strong associations with canopy
structure across the gradient, but these relationships were scale dependent. Topography played a greater role in
predicting forest structure at fine spatial scales, while climate variables dominated our models, particularly at
coarse scales. Our results indicate that multiple abiotic factors are associated with increased maximum tree
height; climatic water balance is most strongly associated with this component of forest structure but varies
across all spatial scales examined (6.9–54.8% relative importance), while variables related to topography also
explain variance in tree height across the elevational gradient, particularly at finer spatial scales (37.15%,
20.26% relative importance at 25, 50m scales respectively).

1. Introduction

Forest canopy height is strongly related to forest productivity and
carbon sequestration (Keith et al., 2009). Tall and varied vertical forest
structure provides habitat for wildlife, and increased canopy height and
stem diameter is positively correlated with terrestrial plant diversity at
multiple spatial scales (Cazzolla Gatti et al., 2017; Lindenmayer et al.,
2012; Lutz et al., 2018; Marks et al., 2016; Slik et al., 2013; Terborgh,

1985). Overstory vegetation is also an important driver of near-surface
micro-climate conditions important for plant growth, recruitment and
regeneration (Chen et al., 1999). In spite of its importance to ecosystem
processes and biodiversity conservation, environmental predictors of
forest canopy height have been largely assessed at coarse spatial re-
solution over continental-to-global scales, despite significant regional
and local variation (Tao et al., 2016; Zhang et al., 2016). A better un-
derstanding of abiotic drivers of forest height across scales, especially at
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scales relevant to forest dynamics and management, will help connect
ecological theory to ecosystem management in an era of global change.

Water-energy dynamics have long been hypothesized to control
growth and attainable tree height, and climatic factors affecting max-
imum tree height have been explored over large latitudinal and alti-
tudinal gradients. Tree height may be constrained due to increased
probability of hydraulic failure, as well as limited carbon assimilation
in the upper canopy (Ishii et al., 2014; Koch et al., 2004; Ryan and
Yoder, 1997), and limited water transport (Jensen and Zwieniecki,
2013). There is evidence for hydraulic resistance and stomatal con-
ductance limiting both tree height and the leaf area to sapwood area
ratio, particularly in older, larger individuals, a pattern that increases
with tree age and appears to be consistent globally (McDowell et al.,
2002; Ryan and Yoder, 1997; Schäfer et al., 2000). For eucalyptus
forests in Australia, Givnish et al. (2014) found a strong relationship
between precipitation and maximum tree height along a rainfall gra-
dient, suggesting both allocational allometry and hydraulic limitation
were determining maximum tree height. They proposed that hotter,
drier conditions lead to negative feedbacks related to decreased vertical
structure, potentially denser wood and lower hydraulic conductivity
(Givnish et al., 2014).

Global-scale studies have shown that climatic factors related to
water and energy balance are strong predictors of canopy height, al-
though factor importance varies across biogeographical regions and
latitudinal gradients (Cong et al., 2016; Moles et al., 2009; Zhang et al.,
2016). Tall trees (> 25m) are found in both temperate and tropical
climates above a rainfall threshold of roughly 1500mm and where
rainfall and temperature variability are low (Scheffer et al., 2018).
Globally, canopy height has a bimodal distribution, correlated with the
distribution of tree cover; in regions with low precipitation, trees are
short and sparse (savanna) whereas in regions with high precipitation,
trees are tall and dense (forest). Landscape (kilometers) and local-scale
variation (25–500m) in energy and water balance associated with to-
pography and soils may mediate coarse-scale climate regimes. For in-
stance, topography mediates solar radiation and thus evapotranspira-
tion and water deficit (Dubayah and Rich, 1995). Steeper topography
enhances tree biomechanical damage by gravitational forces (King

et al., 2009) and influences wind disturbance that could limit tree
height (Larjavaara, 2010). Furthermore topography is also key in soil
development and erosion, which in turn affects soil water retention
(McNab, 1989; Moore et al., 1991), playing a key role in patterns of
forest mortality (Anderegg and HilleRisLambers, 2016; Anderegg et al.,
2016; Young et al., 2017). Additionally, soil properties influence tree
height via nutrient availability (e.g. P, Mg and N) and water dynamics
(Cramer, 2012; Huston, 1980). A survey of soil along an elevational
transect adjacent to our study area found that soil pH decreases and soil
carbon increases with elevation, with large breakpoints in nutrients and
weathering coinciding with the transition from oak woodland to mixed-
conifer forest, as well as the average effective winter snow line
(Dahlgren et al., 1997).

Given the potential for multiple mediating factors at landscape-to-
local scales, the goal of this study is to characterize the association of
climate, topography and soil factors with forest height across spatial
resolutions from 25 to 1000m within temperate, mid-latitude wood-
lands and forests found at the same latitude. We use airborne Light
Detection and Ranging (LiDAR) data over a 200–3000m elevational
gradient in the Sierra Nevada (California, USA) to determine (1) What
is the distribution of tree height across this elevation gradient? and (2)
Which climate, topography and soil variables have the greatest influ-
ence on maximum tree height and how do these relationships vary with
scale? We expected water availability to limit maximum tree height in
this region dominated by water-limited forest and woodland, and that
factors related to climatic water balance would explain tree height
variation at broad scales while topographic factors influenced water
balance. We also expected maximum tree height to be greater where
soil factors indicate greater availability of plant nutrients.

2. Methods

2.1. Study area

Our study area consists of four non-contiguous sites; three of these
form part of the USA National Ecological Observatory Network (NEON;
www.neonscience.org) D17 (Pacific Southwest, California, USA; Fig. 1).

Fig. 1. Study Area. Landsat satellite imagery map (true color) and NEON D17 Pacific Southwest sites. San Joaquin Experimental Range (SJER-yellow), Soaproot
Saddle (SOAP-blue), Providence Creek (PROV-magenta), Teakettle Forest Watershed (TEAK-red). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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This study area was selected because of the availability of prototype
NEON airborne remotely sensed data acquired in 2013 using the Air-
borne Observation Platform (AOP). We used the maximum available
data footprint around each research site. From low to high elevation
and west to east, the four sites are the San Joaquin Experimental Range
(SJER), Soaproot Saddle (SOAP), Providence Creek (PROV) and the
Teakettle Watershed (TEAK) (Fig. 1). These sites span a 2800-m ele-
vation gradient of decreasing average temperature and increasing
precipitation (Goulden et al., 2012). Sites range from open oak wood-
land savanna at 150–520m at SJER, to conifer-dominated forests from
1390 to 3030m at Teakettle (Barbour et al., 2007; Mooney and
Zavaleta, 2016). Providence Creek and Soaproot Saddle are mid-ele-
vation sites that capture the transition zone from open savanna to dense
forest (Mooney and Zavaleta, 2016), and the upper elevation range of
the Providence Creek watershed overlaps with the lower range of the
Teakettle watershed around 1500m (Fig. 1). The region has a typical
Mediterranean-type climate with warm to hot (17–27 °C) dry summers
and cool to cold (10–0 °C) wet winters (Ma et al., 2010). We were
motivated to evaluate the use of publicly available NEON data that are
intended for ecological monitoring and because the NEON D17 site was
specifically designed to span multiple sites across the valley-montane
transition.

The lowest elevation site SJER comprises about 6700 ha of oak
woodland and savanna in the Sierra Nevada foothills (36° 58′ N, 119° 2′
W) in California’s Central Valley north-east of Fresno, CA (Ratliff et al.,
1991). The sparse canopy (< 25%) is dominated by two species of oak
(Quercus wislizeni and Quercus douglasii) and foothill pine (Pinus sa-
biniana), and the understory is composed of scattered shrubs and a
nearly continuous cover of herbaceous plants (mostly non-native an-
nual grasses), and gently undulating terrain. This site is currently a
functioning research rangeland laboratory associated with California
State University, Fresno.

The two middle elevation transition sites Soaproot Saddle and
Providence Creek are nearby and ecologically similar. Soaproot Saddle
(3300 ha) lies in an intermediate location along the elevation gradient
(37° 1′ N, 119° 15′ W), from 920 to 1590m elevation in California’s
southern Sierra Nevada Mountains. The forest is mixed deciduous/
conifer forest dominated by ponderosa pine (Pinus ponderosa) and in-
cense cedar (Calocedrus decurrens) with an open, structurally mixed
canopy and a dense understory and ground layer of shrubs and grasses.
Topography is complex with broad hills and valleys. This site receives
approximately 20% of annual precipitation as snow and 80% as rain
and captures the snow-rain transition. The Providence Creek site (37° 3′
N, 119° 11′W), a 1000 ha catchment, is the primary research area in the
Southern Sierra Critical Zone Observatory (http://criticalzone.org/
sierra/) and ranges in elevation from 1580 to 2190m. Forest vegeta-
tion at Providence Creek is similar to Soaproot Saddle, composed of
mid-elevation, mixed-conifer forest. The Providence Creek Watershed is
part of the larger Kings River Experimental Watersheds research project
managed by the USDA Forest Service, Pacific Southwest Research
Station, and although included in the initial NEON Airborne
Observation Platform data collection in 2013, it will not be collected in
future NEON missions. The hydrology and setting of Providence Creek
was described in detail by Hunsaker et al. (2012).

Mixed conifer/deciduous forest transitions to red-fir dominated
conifer forest at the upper elevations of the 1500–3038m Wishon

watershed. The watershed extends uphill and north of the Wishon
Reservoir and downhill to the south of the Wishon Dam where the
1250 ha Teakettle Experimental Forest is located (Kampe et al., 2013).
The Teakettle Experimental Forest is located within this 18,500 ha
watershed area at 36°58′N, 119°2′W, and at elevations 1900–2500m.
The forest is dominated by white fir (Abies concolor) in terms of basal
area and tree density, but sugar pine (Pinus lambertiana) and Jeffrey
pine (Pinus jeffreyi) are among the largest diameter and tallest trees.
Incense cedar (Calocedrus decurrens), western white pine (Pinus mon-
ticola), and lodgepole pine (Pinus contorta) are also prevalent and
scattered black oak (Quercus kelloggii) can be found in rocky areas,
primarily at the lower elevations. Shrub cover typically consists of
whitethorn ceanothus (Ceanothus cordulatus), and green leaf manzanita
(Arctostaphylos patula) (North et al., 2002).

Past management activities can influence tree height distributions
due to logging practices and forest clearing. Past management activities
have influenced the current distribution and abundance of tall trees in
the three study areas dominated by conifers (i.e., Soaproot Saddle,
Providence Creek and Teakettle) where some logging has occurred
beginning in the 1880s, which could blur the relationship between
canopy height and abiotic factors. All of these three sites, however,
have substantial areas where little to no tree removal occurred due to
limited access and mill activity (McKelvey and Johnston, 1992). With
the exception of the Teakettle Site’s highest elevations, most of these
forests have been selectively harvested at least once over the last cen-
tury, often removing the largest, commercially-valuable trees (i.e., ‘high
grading’ (Rose, 1994)). As a result, residual old-growth stands con-
taining some of the tallest trees could be associated with less me-
chanically accessible sites such as steeper, mid-slope positions. The
Sierra National Forest, however, has not been as heavily logged as
many other National Forests particularly those in the northern Sierra
Nevada (North et al., 2015, 2009). All three sites have substantial areas
where little to no tree removal occurred due to limited access and mill
activity (McKelvey and Johnston, 1992; Rose, 1994) and large, old trees
are well-distributed across the landscape. Furthermore, previous studies
in the Sierra Nevada based on models (Urban et al., 2000), historical
data (Collins et al., 2015; Stephens et al., 2015), and LiDAR (Kane et al.,
2015) as well as field sampling (Lydersen and North, 2012) have found
tall trees in mesic locations associated with large-scale climatic water
balance and local topography (i.e., valley bottom and lower slope po-
sitions), in spite of the history of logging (see Table 1).

2.2. Airborne LiDAR data and vertical forest structure

Airborne LiDAR imagery across all sites was collected by the NEON
Airborne Observation Platform during multiple flights in June 2013.
NEON used an Optech Gemini small-footprint LiDAR sensor that re-
cords both discrete range and full waveform returns (Kampe et al.,
2013). We used maximum canopy height (CHmax) as our response
variable to explain the site’s potential for tree growth and as an effort to
mitigate the effects of past disturbance from human or natural causes
which might disproportionately affect mean canopy height. To control
the LiDAR point classification we completely reclassified the point
cloud and ran numerous smoothing and outlier point removal filters in
addition to a manual classification accuracy check in Microstation’s
Terrascan and QCoherent’s LP360 software. The canopy surface/digital

Table 1
Site code, name, elevation range, climate and description of topography for each of the four study sub-sites.

Code Name Elevation (m) Vegetation Topography

SJER San Joaquin Experimental Range 148–518 Open oak woodland savanna Gentle, Rolling Hills
SOAP Soaproot Saddle 921–1589 Transition zone from open savanna to dense forest Complex Topography, broad hills and valleys
PROV Providence Creek 1582–2192 Transition zone from open savanna to dense forest Complex Topography, broad hills and valleys
TEAK Teakettle Experimental Forest 1391–3038 Conifer-dominated forests Steep, complex terrain
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elevation model and canopy height model were all derived from this re-
classified point cloud. To calculate vertical forest structure from LiDAR
we first created a canopy height model (CHM) which is the first-return
canopy surface model (CSM) minus the bare-earth digital elevation
model (DEM). The 1-m resolution canopy surface model is created by
taking the highest return from any ground- or canopy-classified point
within each pixel (not including points that strike objects like birds,
clouds, smoke, etc.). The digital elevation model is an interpolated, last-
return “bare earth” surface which is then rasterized to 1m to match the
resolution of the canopy surface model. After subtracting the digital
elevation model from the canopy surface model, the resulting canopy
height model is a measure of vertical tree height with differences in
topography removed (Næsset, 1997; Patenaude et al., 2004). CHmax is
the highest value of the canopy height model pixel in the gridded cell at
each spatial resolution (25, 50, 100, 250, 500, 1000m).

The study area has numerous features that are not forested and were
identified visually and manually removed from our analysis. These in-
cluded highways, irrigation ponds, large lakes, private residences and a
large utility ‘right-of-way’ corridor in which all tall vegetation has been
removed. Grid cells which contained these features were manually di-
gitized and removed. Because most of these structures or clearings were
relatively small (< 100m across), we only removed them from the
analyses conducted at the finest spatial scales (25, 50, 100m).
Removing these features focuses the analysis on vegetation that has not
undergone obvious human manipulation or clearing. Grid cells with
maximum canopy values less than 3m were also removed to avoid
analyzing cells with no trees.

2.3. Predictor variables

2.3.1. Climate
We used annual precipitation, annual temperature seasonality,

growing degree days (above 5 °C), maximum annual temperature,
minimum annual temperature, and climatic water deficit (CWD) as the
climate predictor variables (see abbreviations in Table 2). Annual
temperature seasonality is the annual range in temperature, and
growing degree days is the annual sum of mean daily temperatures
minus 5 for all days with a mean daily temperature> 5 °C. Maximum
and minimum temperature is the mean high and low temperature of the
warmest and coldest months respectively. Climatic water deficit is
quantified as the amount of water by which potential

evapotranspiration exceeds actual evapotranspiration (Stephenson,
1998). The climate data used in our study were developed using the
Basin Characterization Model (BCM) based on 270m resolution digital
elevation data (Flint et al., 2013). Historical Parameter-elevation Re-
lationship on Independent Slopes Model (PRISM) precipitation and
temperature data (Daly et al., 2008, 1994) were spatially downscaled
from 800m to 270m using Gradient Inverse Distance Squared (GIDS)
downscaling (Nalder and Wein, 1998), an approach which applies
weighting to monthly point data, developing multiple regressions for
every fine-resolution grid cell for every month. Using the PRISM cli-
mate variables and a 270m digital elevation model, parameters
weighting is based on the location and elevation of the coarse-resolu-
tion cells around each fine resolution cell to predict the climate variable
in the fine resolution cell (Flint and Flint, 2012; Nalder and Wein,
1998). The BCM provided gridded estimates of 14 different variables
including precipitation, climatic water deficit, temperature and sea-
sonality. From the past 30-years of climate data, we calculated the
mean and standard deviation of each of the climate predictor variables
at each resolution as potential predictors of CHmax. We used these
statistics to capture the average, and spatial variability of each of our
predictor variables. At coarse scales, individual grids cells can contain
large variations in individual variables and at fine spatial scales, climate
variables contained no variability so only the mean value was used.

2.3.2. Topography
We focused on terrain variables that are considered proxies for

‘microclimates’ or topo-climates, where topographically-determined
variability in radiation, and hydrologic environments might promote
tree growth, or modify the regional climate at fine scales (Frey et al.,
2016). We varied the spatial resolution of the digital elevation model
from 1 to 20m to identify effects of spatial scale on estimation of
variables such as curvature which has been shown to be scale sensitive
(Detto et al., 2013), and based on this we chose 1-m resolution for the
final analysis. Standard deviation of elevation was calculated at each
scale as a measure of terrain roughness (Wilson and Gallant, 2000). We
processed the LiDAR digital elevation model to derive primary topo-
graphic attributes (Gallant and Wilson, 2000) including mean eleva-
tion, terrain slope and curvature at each scale (Moore et al., 1991), and
also computed secondary attributes including potential solar radiation
on a sloping surface (using the Areal Solar Radiation Model) (Fu and
Rich, 2002), and soil wetness estimated using the Topographic Wetness

Table 2
Description of predictor variables.

Variable name Variable description Units Native resolution Variable type

MAP Mean annual precipitation mm 270m Climate
ATS Annual temperature range Degrees Celsius 270m Climate
GDD Growing degree days with base of 5 °C Degree days 270m Climate
Tempmax Maximum temperature of the warmest month Degrees Celsius 270m Climate
Tempmin Minimum temperature of the coldest month Degrees Celsius 270m Climate
CWD Climatic water deficit mm 270m Climate
CURV Slope curvature (unitless)+ convex, 0 flat, − concave 1m Topography
TWI Topographic wetness index (upslope contributing area scaled by slope) (unitless) 1 m Topography
DEM Solar 3 m Potential solar radiation on a sloping surface Watts/m2 3m Topography
DEMsd Standard deviation of elevation m 1m Topography
AWCmean Available water content cm water/cm soil Vector Soil
OMmean Organic matter mg Vector Soil
pHmean Potential of Hydrogen −10 log H+ Vector Soil
PARMATNM_D Geologic parent material Rock type from Basalt, Till, Granite, etc. Vector Soil

Subscripts
Max Maximum (ex. Tempmax)
Min Minimum (ex. Tempmin)
Mean Mean (ex. OMmean)
Sd Standard Deviation (ex. DEMsd)

Climate Data Source: https://ca.water.usgs.gov/projects/reg_hydro/projects/dataset.html.
Topography Data Source: http://data.neonscience.org/home.
Soil Data Source: https://catalog.data.gov/dataset/soil-survey-geographic-ssurgo-database-for-various-soil-survey-areas-in-the-united-states-.
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Index, a physically-based basin contribution model (Beven and Kirkby,
1979). Equation below:

=

+

Topographic Wetness Index α
β

ln
tan c

where α is the upslope contributing basin area, β is the slope at that cell
as defined by Moore et al. (1991) and we modified the equation slightly
by adding c, a small constant (c= 0.01), to avoid division by zero in
flat terrain cells. We calculated the topographic predictor variables
using Python scripts in ArcGIS 10.3.

2.3.3. Soil
We selected soil variables that reflect the physical and chemical

properties of soils that influence vertical vegetation structure. These
included available water content, organic matter, pH and geologic
parent material (Table 2). Soil data were obtained from the National
Resource Conservation Service’s SSURGO and STATSGO national soil
databases using the ArcGIS SSURGO Soil Data Development Toolbox
(Soil Survey Staff United States Department of Agriculture, 2017). We
gridded continuous and categorical soil variables using the Map Soil
Properties and Interpretations tool in the gSSURGO Mapping Toolset in
ArcGIS 10.3. We calculated the mean and standard deviations of
Available Soil Water Content, OM and pH at each scale. We also in-
cluded three categorical variables related to geologic substrate, rock
type and geologic parent material.

2.4. Statistical analysis

Our statistical methods used generalized boosted models to predict
CHmax as a response variable from environmental variables which
characterized climate, topography and soil characteristics. The pre-
dictor variables were calculated from source data ranging in spatial
resolution from 1 to 270m (Table 2) and then gridded at six different
spatial resolutions, resulting in a range of sample sizes (number of grid
cells) available for each scale of analysis: 1000m (n= 195), 500m
(841), 250m (3826), 100m (24,895), 50m (102,001), and 25m
(400,460). Our study was designed to span a range of resolutions in
order detect patterns in these scale-dependent correlations. The up-
scaling of finer resolution to coarser resolutions was done by nearest
neighbor averaging for continuous variables, and for the soil categorical
variables, the category with most of the area in each grid cell was used
to represent the entire grid cell.

We used generalized boosted (regression tree) models in R (R Core
Team, 2017), Version 1.0.136, package ‘caret’ and ‘gbm’ (Kuhn, 2008;
Ridgeway, 2007) to predict maximum canopy height variables from the
environmental predictors. We chose generalized boosted models be-
cause they combine the strengths of two algorithms, regression trees
(models that relate a response to their predictors by recursive binary
splits) and boosting (an adaptive method for combining many simple
models to give improved predictive performance). Boosted regression
trees have been used extensively in ecological modelling (Elith et al.,
2008). Generalized boosted models (GBMs) are a powerful ensemble
statistical learning approach capable of achieving bias reduction
through forward stagewise fitting, suitable for handling different types
of predictor variables and their interactions, and able to characterize
complex data-generating processes (Elith et al., 2008; Hastie et al.,
2009). The final model can be understood as an additive regression
model in which individual terms are simple trees, fitted in a forward,
stage-wise fashion. Generalized boosted models provide an estimate of
variance explained by the model and the relative importance of the
predictor variables.

We initially explored many potential predictors within each group
(climate, topography, and soil) and computed a preliminary set of
generalized boosted models to screen variables. The results of the
preliminary generalized boosted models were sorted by spatial resolu-
tion and variable importance was ranked to remove the lowest

contributing third of all variables from subsequent modeling. The top
predictor variables in each group are listed in Table 2 (see Table S1 for
a full list of all variables initially considered). GBM models of maximum
canopy height were then developed using the top two thirds of the
candidate predictors from each group. Model parameters were cali-
brated with 10-fold cross-validation and a full factorial design with
interaction depth varied over the integers from 1 to 5. The number of
regression trees was varied from 2,000 to 10,000 in increments of 2,000
and the shrinkage rate was varied from 0.1 to 0.01, at intervals of 0.01.

The gbm package in R, originally developed by Friedman (2001),
estimates the relative influence of predictor variables. This measure of
variable importance is defined as the number of times a variable is
selected for splitting, weighted by the squared increase in explained
deviance to the model as a result of each split, and averaged over all
trees (Friedman and Meulman, 2003). Thus, each variable’s relative
contribution (or importance) represents its percentage of the total
contribution of all variables. Although variable importance is de-
termined by splitting thousands of models in different trees, generalized
boosted models should not be considered a statistical ‘black box’ since
individual variable responses can be summarized, evaluated and in-
terpreted similarly to a conventional regression model using partial
dependence plots (Elith et al., 2008). In our study, variable importance
is tracked relative to the other variables for models at each spatial scale.

We expect CHmax (our response variable) to be correlated with en-
vironmental predictors that we know are spatially structured (Lennon,
2000). We would expect environmental conditions to show positive
spatial autocorrelation (SA), at spatial lags of tens to thousands of m for
topography, and tens to hundreds of km in the case of climate. Boosted
regression tree models (GBM) are more robust to the effects of SA on
model fit, variable importance and estimated response curves than
generalized linear models (Crase et al., 2012). Model residuals were
tested for SA at each spatial scale (one-cell lag for 250, 500 and 1000m
scales, lags 1–4 for 100-m, lags 1–5 to 50-m and lags 1–6 for 25-m) to
aid interpretation of the models. Analysis of SA in model residuals can
suggest that there may either be missing (spatially structured) en-
vironmental predictors or that there are spatially structured data gen-
erating processes for the response variable, but cannot distinguish be-
tween these exogenous or endogenous causes (Dormann et al., 2007;
Legendre et al., 2002).

3. Results

3.1. Canopy height on an elevation gradient

Estimated maximum tree height ranged from 3 to 70m, measured at
elevations ranging from 200 to 3000m. The distribution of maximum
tree height with elevation was non-linear, with a peak at about 2300m
and a secondary peak at about 1200m. Maximum tree height is smallest
at the lowest elevation in the transect but declines at both ends of the
elevation gradient. We lacked observations between 500 and 950m
elevation – the elevation gap between the open oak woodland (San
Joaquin Experimental Range) and the transition zone to mixed conifer
(Soaproot Saddle) (Fig. 2). However, this gap is less than 14% of the
total elevation range and our data do include the rain-snow transition
or the water- to energy-limited forest transition at 2400m.

3.2. Predictor variables associated with canopy height across scales

Overall variance in maximum height explained by generalized
boosted models was roughly the same across the intermediate scales
examined (50–500m) ranging from 72 to 83%, and greatest at the
100–250m scales. At both the coarsest (1000m) and finest (25m)
spatial scales, the amount of variance explained was considerably lower
than at middle scales, particularly at the finest spatial scale at which
only 21% of total variance was explained. The relative influence of all
aggregated climatic, topographic and soil predictors was similar across
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scales; soil and topography converged in their importance at 500- to
1000-m scale, but still both were much less important than climate
(Fig. 3). The relative influence of soil and topography variables de-
creased, and influence of climate increased, for coarser-scale models,
and at 25 1000-m scale four of the five top-ranked predictor variables
were climate predictors (Fig. 4).

We show the five top-ranked predictors for CHmax at each scale
(Fig. 4; variable importance ranking for all predictors is shown in Table
S2). CHmax is most strongly correlated with climate variables including
climatic water deficit, growing degree days, and temperature. Annual
Precipitation, climatic water deficit, standard deviation of climatic
water deficit, minimum temperature, maximum temperature, growing
degree days, standard deviation of growing degree days, and annual
temperature seasonality all were included among the top five predictors
for at least one of the spatial scales. Temperature variables related to

growing season length (minimum temperature and growing degree
days) and heat stress (maximum temperature) rank among the top
predictors only at the coarser 250- and 500-m scale. Topoclimatic
variables including solar insolation and topographic wetness index are
important predictors at the finest (25–50m) scale. The topographic
variables are more strongly associated with canopy height compared to
soil variables across scales, with a strong divergence at the 25-m scale
(Fig. 3). The only soil attributes included in the top five predictors at
any scale was average pH (Fig. 4), although other soil variables were
included in the full models (Table S2).

Maximum canopy height declined with increasing CWD and had an
approximately unimodal response to annual precipitation – height was
greatest at middle levels of precipitation and declined at the very
highest values of precipitation. Maximum height also was greatest at
intermediate values of maximum temperature (Fig. S1a).

Models residuals were not significantly spatially autocorrelated
(P > 0.05 based on Moran's I) for the 1000-m, 500-m or 250-m
coarser-scale models (Table S3). Residuals were spatially auto-
correlated (P < 0.05) for 25-m, 50-m and 100-m finer-scale grids at all
lags tested, suggesting that there are either additional spatially-struc-
tured environmental drivers not included in our model that may be
important at those scales, or that there are endogenous factors (biolo-
gical processes) causing tall trees to be near other tall trees and vice
versa at those scales. These Moran's I values were small, however,
ranging from 0.02 to 0.33 on a scale of 1 to −1, where 0 indicated
complete spatial randomness (Table S3). This suggests that SA was not
strong; the Moran's I values were nonetheless significantly different
from zero because of the extremely large sample size – the statistic was
calculated based on every cell in the study area grid.

3.3. More than climate I: terrain curvature and solar radiation

Although terrain curvature only explains 1.3–6.6% of total variance
across scales, there is a consistent cross-scale association between ter-
rain curvature and canopy height, with taller trees occurring in valley
bottoms or on concave slopes (negative curvature). At fine spatial scales
(25–100m) the negative association of terrain curvature with height is
the strongest, weakens at coarser spatial scales, and is weakest across
scales for the oak woodland (SJER) site (Fig. 5).

Fig. 2. Scatterplot of maximum canopy height (m) as a function of elevation (m) at 250m scale. Black line is a locally weighted scatterplot smoothing average
bounded by the 95% confidence interval (gray shadow). Each point represents the maximum canopy height for 0.25 km2. Colors correspond to site colors in Fig. 1.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Cross-scale relative influence plots (left) grouped by climate (short da-
shed line), soil (solid line) and topography (long dashed line) variables and R-
squared values (dots) for generalized boosted models at each scale.
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3.4. More than climate II: soil parent material

Although soil variables were the least important factors associated
with CHmax across all scales in our comparisons, there are instances
where canopy height is stunted on specific soil types (Fig. 6). Maximum
canopy height was greatest on residuum weathered from basalt, re-
siduum weathered from andesite, and residuum/colluvium/till weath-
ered from granite parent materials. Lower CHmax was found on re-
siduum weathered from metasedimentary rock, alluvium/colluvium
derived from granodiorite and residuum weathered from granite. The
majority (∼85%) of the study area is underlain by granite parent ma-
terial, but basalt is present, and weathering patterns and soil texture
change along the elevation gradient and with topography.

4. Discussion

The results of this study highlight strong, scale-dependent associa-
tions between maximum canopy height and water availability as
measured by the climatic water deficit, mean annual precipitation, and
topographic factors across a ∼2800m regional elevational gradient.
Remarkably, despite the extensive disturbance history of the region,
these environmental factors explain 70% of the variance in maximum
canopy height within these mid-latitude temperate woodlands and
forests. Generalized boosted models explain most of the variance in
CHmax at spatial scales of 50–500m. As predicted, coarse-scale patterns
of canopy height (250–500m) are associated primarily with climatic
variables related to water balance. While climate variables still dom-
inate at finer scales (50–100m), topographic variables affecting
moisture availability (terrain curvature, topographic wetness index,
solar radiation model) become relatively more influential (Fig. 4). Al-
though most of the area is underlain by granitic parent material, CHmax

is also associated with parent material and associated soil properties,
notably soil pH. We acknowledge that there is a roughly 450m

elevation gap in our data however this gap does not cover the rain-snow
transition zone or elevations that coincide with critical zones of species
turnover or water-energy limitation transition.

4.1. Climatic variables associated with maximum tree height

Temperate forest structure along the elevation gradient is limited by
the availability of water and energy (Boisvenue and Running, 2006). At
the dry low-elevation end of the moisture availability gradient, tree
growth may be moisture limited, while at the moist end, light compe-
tition may drive forest height (Liénard et al., 2016). At higher eleva-
tions and latitudes with freezing winter temperatures and a short
growing season, we would expect canopy height to be limited by low
temperatures (Reich et al., 2015), as illustrated by the short, sparse
nature of boreal forest canopies near arctic tree line, and shorter trees
as alpine tree line is approached (Paulsen et al., 2000). In the tropics,
however, global studies indicate that temperature is not a limiting
factor for tree height (Way and Oren, 2010). Additionally, there is
evidence that the world’s tallest trees are found in temperate latitudes
and grow in similar (mild and stable) thermal climates (Larjavaara,
2014).

The overwhelming importance of climate variables describing water
limitation found in this study is consistent with coarse-resolution,
global-scale studies showing that water availability limits maximum
canopy height in tropical and temperate regions (Scheffer et al., 2018;
Zhang et al., 2016). Our results are also consistent with the char-
acterization of forests below ∼2400m in our study region as water
limited (Das et al., 2013; Tague et al., 2009). Along this same gradient,
annual evaporation and gross primary production have been found to
be greatest at 1160 and 2015m; both were lower at 405m, coincident
with less precipitation, and at 2700m coincident with colder tem-
peratures (Goulden et al., 2012). We found that climate variables re-
flecting energy limitation (minimum temperature, growing degree

Fig. 4. Generalized boosted models relative influence plots outlined by variable type (climate, soil, topography) across spatial scales for the five most important
variables by spatial scale (25–1000m grid cells). Variable categories are outlined by line style indicating climate (solid line), soil (short dashed line) and topography
(long dashed line). For each model scale, only the top five contributing variables are shown (relative importance of all variables in Table S2); different scales have a
different set of top five variables, but all variables across scales are shown in the legend. All variables are means unless standard deviation (sd) is indicated.
Independent variables correspond to Table 2.
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Fig. 5. Maximum canopy height plotted as a function of terrain curvature at six scales. Negative curvature is concave up (valleys) and positive curvature is concave
down (ridges).

Fig. 6. “Soil Type”: Boxplots showing Maximum Canopy height cross tabulated by Soil Geologic Parent Material. Line is median, box encompasses 25–75th per-
centile, whiskers encompass 5–95th percentile, dots are observations beyond that. The sample size is shown in each box (number) for the 1 ha (100×100m grid cell)
scale.
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days) were also correlated with canopy height along our gradient that
extended into energy-limited forests above 2400m elevation with in-
creased snow cover and shorter growing seasons. Lower CHmax values
were found at low values of minimum and maximum temperature, high
values of temperature seasonality, and low values of growing degree
days.

While we did attempt to quantify both geological substrate and
water availability, variables like geologic substrate type do not capture
deep, subsurface porosity or water holding capacity (Meyer et al.,
2007), and the climatic water deficit measure used only accounts for
available moisture in the top layer of soil (Flint et al., 2013). A study of
subsurface water in the Southern Sierra Critical Zone Observatory
found that large trees are deeply rooted in highly porous saprolite
(weathered subsurface rock at the base of the soil profile) with roots
reaching 10–20m below the surface. This porous rock layer contains
large volumes of subsurface water and is vital to supporting the eco-
system through the summer dry season and extended droughts (Klos
et al., 2018). Having spatially-explicit maps of subsurface porous rock
containing water that can be tapped by large trees would improve our
ability to model maximum tree height and predict future forest dis-
tribution. In spite of this limitation, CWD explained 18–52% of the
variation in maximum tree height and was the most important predictor
at every scale. The 25-m resolutions model explained substantially less
variance than those for coarser resolutions, and also showed the
greatest spatial autocorrelation in residuals. This suggests that the
mapped predictors used in this study do not describe patterns of max-
imum tree height at that scale, and that there are other exogenous or
endogenous factors affecting CHmax at the local scale. Possibly, at that
higher resolution there is a qualitative biological gap that could explain
such differences. At 30m, it is likely that we are switching from de-
scribing canopy to describing individual trees. At that level of organi-
zation (individuals vs. tree communities) it is likely that our ability to
capture individual histories through climate decreases. Indeed, cross-
scaling across levels of ecological organization still remains a challenge.
We are uncertain why the explanatory power of the model declined
from 500-m to 100-m resolution, but we note that the amount of var-
iance explained by our 1000-m resolution models is about the same as
was explained in a global model based on 55-km grids (Zhang et al.,
2016).

4.2. Topography

Topography affects vertical forest structure by controlling environ-
mental factors such as water drainage, solar radiation regime, soil
depth, cold air pooling and wind exposure. As predicted, topographic
effects were detected at the finest spatial scales in the generalized
boosted models for CHmax, but show less importance at the coarse
landscape scale where effects of climate dominate.

Terrain curvature, topographic wetness index and the solar radia-
tion model all affect soil water balance and were important relative to
the other topography variables. At fine scales (25–100m), solar radia-
tion was more important and at coarse scales (250–1000m) terrain
curvature was more important. This indicates that specific levels of
solar exposure and topographic concavity can both promote taller tree
growth, independent of meso-scale climate or soil characteristics. Tree-
ring data from an Appalachian watershed showed differences in growth
rates on different topographic aspects with nearly all species exhibiting
faster growth rates on (cooler, shaded) northeast facing slopes com-
pared to (warmer, drier) southwest facing slopes, presumably due to
differences in solar radiation driving evaporative demand (Fekedulegn
et al., 2003).

Taller trees generally occur in valleys as opposed to ridgetops
(Fig. 5), and are found at the lowest levels of solar radiation; high levels
of topographic radiation are associated with shorter tree heights at the
finest spatial scales, suggesting the dominance of water-limitations
(resulting from the positive relationship between insolation and water

stress) on much of the gradient (Fig. S1). Tall trees found at inter-
mediate levels of potential radiation may reflect the ameliorative effects
of topography on climatic temperature limitations to tree height at
higher elevations in the transect where the tallest trees are found. While
other studies of canopy height in the Sierra Nevada Mountains have
found a positive correlation between change in tree height and the
topographic wetness index (Ma et al., 2018), our results showed that
climatic variables are more strongly associated with canopy height over
regional scales while topographic wetness is correlated with maximum
height at local scales.

4.3. Soil

Among the soil variables considered, pH had the strongest associa-
tion with CHmax, but this is likely because in our study region tall,
coniferous trees are found on granitic-derived, shallow, poorly-devel-
oped acidic soils, while low elevation oak woodland trees are found on
more basic soils that have developed on colluvium and alluvium. Low
pH soils are probably not driving tall tree growth but pH is correlated
with the elevational gradient in water availability and phylogenetically-
determined limits to maximum tree height among the taxa that dom-
inate different parts of the gradient. Soil pH is related to the amount of
precipitation, with soils at higher elevations experiencing heavier
leaching and consequently lower pH values. The lower pH values result
in lower cation exchange capacity and nutrient poor soils at the highest
elevations. Giant Sequoia trees (Sequoiadendron giganteum) are conifers
found along our study gradient adjacent to our study sites and are
among the tallest trees in the world. This suggests that soil nutrients or
pH are not generally limiting to conifer growth compared to other
predictor variables considered. Some soil geologic parent materials
were associated with taller or stunted maximum canopy heights, but
parent material was not highly ranked among soil variables across
scales as a predictor of maximum height. Differences in forest structure
are related to erosion rates, soil depth and nutrient deficiencies
(Cramer, 2012), all of which are influenced by parent material. Our
ranking of variable importance suggests that at low elevations water
availability is limiting tree heights rather than nutrient limitation, but
the effects of soil parent material are still present. In the San Joaquin
Experimental Range, a relatively small area of forest (181 ha) is found
on ‘Residuum derived from Metasedimentary Rock’ and contains the
shortest trees of any geologic parent material type in our study. There is
a distinct break in canopy height between this area and other adjacent
areas in the open oak woodland savanna (SJER) which experience si-
milar climatic and topographic conditions suggesting this soil parent
material type is poorly suited for supporting large trees (Fig. 6).

Our ability to characterize an effect of soils properties on tree height
was compromised by both the characteristics of the study area and the
accuracy and precision of available large-scale mapped data. Geology
and soil were not randomly distributed on our elevation transect, pre-
venting us from disentangling the effects of substrate versus other
factors. The soil types in the NRCS soil survey are based on relatively
few field samples, and spatial interpolation to map units is based on
aerial photographs and historic data (Peters and United States. Forest
Service. Northern Research Station, 2013). So, while our models show
that mapped soil characteristics and the geologic parent material are
marginally important, comprehensive, spatially-explicit field soil sur-
veys and maps would be needed to better understand the effects of soil
nutrients and geology on forest height, particularly at fine spatial scales
(Grunwald et al., 2011; Rossiter, 2006).

4.4. Management implications

Most Sierra Nevada forests lack resilience to wildfire and drought
because historic logging practices and fire suppression have reduced
large tree abundance and significantly increased fuel loads, stand
density and water stress (Stephens et al., 2018). Current management
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practices emphasize realigning forest conditions with topographic dif-
ferences in water availability and local fire regime (North et al., 2009).
A particular focus is on identifying and developing large, tall trees as-
sociated with sensitive vertebrate species such as the California spotted
owl (Strix occidentalis occidentalis) and the fisher (Martes pennanti) in
more mesic, productive sites buffered from high-severity wildfire and
drought stress (North et al., 2017; Stephens et al., 2015). Our results
suggest forest managers could identify such locations using both large-
scale (i.e., > 500m) differences in CWD from readily available mapped
data (i.e., BASIN (Flint et al., 2013)) and fine-scale (i.e., 25–100m)
topographic indicators associated with higher soil moisture (i.e., GIS-
generated topographic wetness index). This could help focus budget-
constrained management practices in these key areas on reducing fuel
loads and water competition, creating stand structures to protect and
foster large, tall tree development.

In the context of global climate change, our findings suggest that as
broad scale changes in climate lead to shifts in moisture and tempera-
ture regimes, large trees will only persist in their current range where
topographic and soil conditions allow. Currently, coarse scale models of
climate and ecosystem response lack the capacity to incorporate mi-
croclimate variability critical to biodiversity refugia (Ashcroft et al.,
2012; Dobrowski, 2011; Frey et al., 2016). Higher elevations that are
currently snow covered for much of the winter and spring, will be less
energy limited under a warmer climate and habitat loss at lower ele-
vations could be offset by habitat gain at upper elevations. This warmer
transition could also increase water stress as there is effectively less
moisture available for plant growth at all elevations. This future sce-
nario is supported by evidence of shifts in California’s forest towards
smaller, denser forests with an increase in oak species (McIntyre et al.,
2015).

The Southern Sierra Nevada Mountains lie at a particularly sensitive
geographic junction where drier, warmer conditions will persist into
the next century and already this area has experienced high canopy
water loss and tree mortality, particularly during the most recent
drought from 2012 to 2015 (Asner et al., 2016). As climate changes,
species and consequently forest structure will also shift geographically.
There is evidence of these shifts in progress along a nearby elevational
gradient where Pinus ponderosa and P. lambertiana experienced in-
creased mortality compared to the other dominant tree species (Paz-
Kagan et al., 2017). The Southern Sierra Nevada mountains are also
home to the largest trees in the world (Giant Sequoias Sequoiadendron
giganteum); although these trees did not occur within the footprint of
the available LiDAR imagery, the climate is very similar to the mid-
elevation transition sites (Soaproot Saddle/Providence Creek) and these
isolated pockets of Sequoias will also experience Southern Sierran cli-
matic changes in the next century. Extensive human management and
fire in these forests has affected species composition and structure,
highlighting the importance of anthropogenic influences on the forests
of the Southern Sierra Nevada (Roy and Vankat, 1999). The elevation
gradient spanned in this study allows us to make predictions about
forest structure as climate changes in the next century, and we expect
broad scale changes to be driven by water availability while fine-scale
refugia will provide microclimatic buffering against hotter and drier
conditions.
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