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A B S T R A C T

Restoration of fire-dependent forests is often guided by reference conditions from forests with an active fire regime, thought to be resilient to current and future
disturbances and stresses. Reference conditions are usually based on historical data or reconstruction, which greatly limits the scale and completeness of data that can
be collected. In the Sierra Nevada of California, large areas with reintroduced active fire regimes coupled with extensive lidar data coverage provide the unique
opportunity to develop a contemporary regional reference condition dataset across a wide gradient of biophysical conditions. We developed this dataset with a focus
on three questions: (1) What is the geographic and environmental distribution of restored active-fire forest areas in the Sierra Nevada mixed-conifer zone? (2) What
are the ranges of variation in forest structure and spatial patterns across reference areas? And (3) How do stand density, tree clumping, and canopy opening patterns
vary by topography and climate in reference areas? We analyzed fire history and environmental conditions over 10.8 million ha, including 3.9 million ha in the Sierra
Nevada mixed-conifer zone, and found 30,377 ha of restored active-fire areas. Although reference areas were distributed throughout the Sierra Nevada they were
more abundant on National Park lands (81% of reference areas) than National Forest lands and were associated with higher lightning strike density. Lidar-measured
ranges of variation in reference condition structure were broad, with tree densities of 6–320 trees ha−1 (median 107 trees ha−1), basal area of 0.01–113m2 ha−1

(median 21m2 ha−1), average size of closely associated clumps of trees from >1 to 207 trees (median 3.1 trees), and average percent of stand area >6m from the
nearest canopy ranging from 0% to 100% (median 5.1%). These ranges correspond well with past studies reporting density and spatial patterns of contemporary and
historical active-fire reference stands in the Sierra Nevada, except this study observed greater total variation due to the much greater spatial extent of sampling.
Within the montane forest zone, reference areas at middle elevations had lower density (86 vs. 121 trees ha−1), basal area, (13.7 vs. 31m2 ha−1), and mean clump
size (2.7 vs. 4.0 trees) compared to lower- and higher-elevation reference areas, while ridgetops had lower density (101 vs. 115 trees ha−1), basal area (19.6 vs.
24.1 m2 ha−1), and mean clump size (3.0 vs. 3.3 trees) and more open space (7.4% vs. 5.1%) than other landforms. Many of the relationships between physiography
and reference structure were context-dependent, suggesting that management practices should create heterogeneous forest structure congruent with local climatic
and topographic factors influencing stand conditions.

1. Introduction

Restoration of forest resilience – the ability of an ecosystem to
maintain or quickly recover function after disturbance – is an important
goal in contemporary forest management, especially in fire-dependent
forests of the western United States (North et al., 2009; Churchill et al.,
2013; Hessburg et al., 2013; DeRose and Long, 2014; Hessburg et al.,
2015; Seidl et al., 2015; Johnstone et al., 2016; Stephens et al., 2016).
Reference conditions describing characteristics of ecosystems that
portray or embody desired functional outcomes can provide a quanti-
fiable link between structure, composition, and desired function
(Churchill et al., 2013). Reference conditions can serve as both way-
points to inform restoration targets (Kaufmann et al., 1998; Moore

et al., 1999) and benchmarks for evaluating restoration progress
(Christensen et al., 1996; Larson and Churchill, 2012). In either case,
reference conditions use a desirable ecosystem as an example for re-
lating function to measurable aspects of structure and composition.

Reference conditions in fire-dependent forests are often drawn from
historical data, including recovered historical inventories (Leiburg,
1900; Langille, 1903; Munger, 1912; Collins et al., 2011; Hagmann
et al., 2013; Lydersen et al., 2013; Hagmann et al., 2014) as well as
reconstructed forest conditions (Fulé et al., 1997; Hessburg et al., 1999;
Scholl and Taylor, 2010; Churchill et al., 2013; Barth et al., 2015;
Schneider et al., 2015; Clyatt et al., 2016; Churchill et al., 2017). His-
torical references represent conditions that existed before Euro-Amer-
ican settlement when linkages between process and pattern remained
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within the bounds of their evolutionary environment (Moore et al.,
1999; Hessburg et al., 2005; Larson and Churchill, 2012), recognizing
that Native American influences constituted a part of that environment
(Vale, 2013). However, primary historical data suitable for defining
reference conditions are rare and often limited in spatial extent and
data quality (Stephens et al., 2015). Reconstructed forest conditions
based on analysis of remnant structures (e.g., live trees, snags, and logs)
can be quite uncertain for smaller trees, and the uncertainty increases
as reconstructions reach farther back in time (Barth et al., 2015). Due to
the amount of labor involved, reconstruction studies are also limited in
their spatial extent. Thus, they are able to characterize stand-level
structure adequately but may not capture variation across wide bio-
physical gradients within landscapes (Hessburg et al., 1999; Dickinson,
2014), an important aspect of restoration planning (Hessburg et al.,
2015). Also, climates have been and are changing, limiting historical
reference data because it describes forest conditions under a climate
different than today (Millar and Woolfenden, 1999; Stephens et al.,
2010; Heyerdahl et al., 2014; Hanberry et al., 2015; Hart et al., 2015;
Johnstone et al., 2016).

Reference conditions can also be drawn from contemporary forests
in areas where characteristic disturbance regimes have been main-
tained or reintroduced and modern anthropogenic disturbances like
logging, mining, and grazing have been minimal (Taylor, 2010; Collins
et al., 2016). In the western United States, fire is the primary process
that structures dry forests (Brown et al., 2004; Hessburg et al., 2005),
maintaining stands characterized by a fine-scale mosaic of tree clumps
and canopy openings (Larson and Churchill, 2012; Churchill et al.,
2013). Since the late 1960s, after about 60 years of fire suppression,
forest managers in the Sierra Nevada region have been making a con-
certed effort to reintroduce frequent lower-severity fire to mixed-con-
ifer forests, especially in National Parks (Parsons and Botti, 1996; van
Wagtendonk, 2007). However, there has been no critical assessment of
where fire regimes have begun to be restored in the Sierra Nevada nor
how much of the region could be considered a reference condition.
Defining contemporary reference conditions for the Sierra Nevada
would supplement existing historical references in three important
ways. First, contemporary measurements are precise with respect to
sizes and locations of trees across the diameter distribution. Second,
contemporary reference conditions inherently incorporate the effects of
recent changes in climate. And third, remote sensing allows quantifi-
cation of large reference landscapes.

The structural conditions associated with resilient forest ecosystems
vary with fine-scale changes in topography and environment (Lydersen
and North, 2012; Kane et al., 2015b; Churchill et al., 2017). Thus, a
regional reference condition dataset should have a wide range of var-
iation reflecting the diversity of physiographic and climatic conditions
across the region. Reference conditions used for a given area should be
drawn from an environmentally and climatically similar reference site
to ensure that resilient conditions in one location will translate to an-
other. This concept is derived from climate analogs (sensu Churchill
et al., 2013), and we refer to it in a broadened sense as biophysical
analogs.

Our objective was to identify and describe contemporary active-fire
reference areas for different biophysical settings within the Sierra
Nevada mixed-conifer zone to support planning, implementing, and
monitoring restoration treatments. We sought to quantify how structure
and spatial pattern vary with topography and climate. We con-
ceptualized spatial pattern as a fine-scale mosaic of widely space in-
dividual trees, clumps of trees closely aggregated in space, and open
space between tree crowns (Churchill et al., 2013).

Our research questions were:

(1) What is the geographic and environmental distribution of restored
active-fire forest areas in the Sierra Nevada mixed-conifer zone?

(2) What are the ranges of variation in structure and spatial patterns
across reference areas?

(3) How do density, tree clumping, and canopy opening patterns vary
by topography and climate in reference areas?

2. Methods

2.1. Classifying the biophysical environment

2.1.1. Climate classes
We began by defining climate classes across the Sierra Nevada

(Fig. 1) to delineate the mixed-conifer zone and to provide the bio-
physical context for analyzing variation in reference condition struc-
ture.

We defined climate classes using the grain size of catchment basins.
Catchment basins form ecologically relevant units (a connected wa-
tershed) that are familiar to forest managers and are operationally
practical for mechanical (e.g., road building and yarding) and fire
treatments (e.g., placement of fire line). We used basin data from the
National Hydrography Dataset (EPA and USGS, 2018), with catchment
sizes ranging from 7 to 1013 ha. We combined any catchments smaller
than 100 ha with their immediate neighbors until a minimum size of
100 ha was reached; the smallest catchment after consolidation was
109.3 ha. For climate classification variables we focused on metrics
integrating the biophysical conditions experienced by vegetation
(Stephenson, 1998). Following the definition of climate analogs by
Churchill et al. (2013), we selected actual evapotranspiration (AET) and
climatic water deficit (Deficit) which are integrated measures of pro-
ductivity and moisture stress, respectively (Lutz et al., 2010). We sup-
plemented these with January minimum temperature (Tmin), which can
help to pinpoint limitations on regeneration and growth (Lutz et al.,
2010; Dobrowski et al., 2013). We gathered annual AET, Deficit, and
Tmin data averaged over the 1981–2010 period from the Basin Char-
acterization Model dataset (Flint et al., 2013, 2014) at a 270m pixel

Fig. 1. Map of study area showing reference areas across the Sierra Nevada,
federal ownership, and lidar acquisitions. Inset shows detail of area with high
reference area density in western Yosemite. Light blue box indicates location
shown in Fig. 3. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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resolution. We calculated the 25th and 75th percentile from the values
for each metric distributed throughout each catchment (Fig. 2).

We used the six resultant variables for each catchment (25th and
75th percentile values for each of AET, Deficit, and Tmin) – normalized
by global maxima – in a hierarchical classification with Euclidean dis-
tances and a complete linkage method, and implemented using the
hclust function in R (R Core Team, 2016). We chose to use 20 classes by
inspecting the dendrogram (Fig. A.1) and scree plot as well as by in-
specting the classification results for cuts at 4, 8, 12, 16, 20, 24, 28, and
32 classes. We assigned descriptive names to each class based on in-
spection of the dendrogram and boxplots of class-wise distributions of
AET, Deficit, and Tmin (Table 1, Fig. A.2).

We validated the climate classes by testing their ability to dis-
criminate between forest composition using Sierra Nevada data from
USFS Forest Inventory and Analysis (FIA) plots (Bechtold and Patterson,
2005). We selected 3217 plots that represent native forested commu-
nities using the following criteria: (1) minimum 10% forest cover, (2)
natural stand origin, and (3) no artificial regeneration. We summarized
composition on each plot by calculating proportions of live tree basal
area by species and assigned each plot a climate class based on its
publicly available fuzzed location (within 1.6 km of the true location).

We used PERMANOVA (McCune et al., 2002) to test whether
composition varied by climate class. With the adonis function in the R
package vegan (Oksanen et al., 2016), we compared proportionate live
basal area by species across climate classes using the Bray-Curtis dis-
similarity measure (Bray and Curtis, 1957) and assessed significance
with 1000 permutations of climate class labels.

To provide a more specific idea of how composition varied by cli-
mate class we took two approaches to associating tree species with each
climate class. First, we created lists for each class giving the species that
are dominant by basal area on at least 5% of FIA plots, in decreasing
order of dominance frequency.

Second, we performed an indicator species analysis (ISA) (McCune
et al., 2002) to determine the most characteristic indicator species for
each class. The ISA calculates indicator values (IVs) for each species in
each class representing how faithful and how exclusive the species is to
that class (McCune et al., 2002). We assessed significance of IVs using a
permutation test, randomly shuffling the climate classes 1000 times. We
assigned an indicator species to each class by taking the species with the
highest IV that was also significant under the permutation test
(p < 0.05). When two climate classes had the same indicator species
we differentiated them by also considering the species with the second
highest significant IV. For pairs of classes where the primary and sec-
ondary indicator species were both the same, we tested for differences
in composition with PERMANOVA using the adonis function, Bray-

Curtis dissimilarities, and 1000 permutations to assess significance.
We used the results of these two composition analyses to make as-

sociations between climate classes and the ecological zones and forest
types defined by van Wagtendonk et al. (2018). We also associated the
climate classes into five major groups: Foothills, Low Montane, Mid-
Montane, Upper Montane, and High Sierra.

2.1.2. Landscape management units
We subdivided catchments by topographic position to capture lo-

calized patterns of change in solar demand, soil depth, and water
availability that can influence the biophysical environment and re-
ference conditions at fine scales (Wiggins, 2017). We classified areas in
terms of landscape management unit (LMU, sensu Underwood et al.,
2010) using the Landscape Management Unit Tool version 2 (Boynton
et al., 2015). This tool operates by classifying a digital elevation model
(DEM) by topographic position. We used the simplified output from the
tool and created the following classes based on a 30m resolution DEM
and default parameters: ridge, valley, SW slope (135–225° aspect), and
NE slope (0–135° and 225–360° aspect). The resultant LMU sizes ranged
from 0.1 to 56.6 ha and averaged 12.0 ha. We did not perform valida-
tion on the LMU classes since the nature of LMUs has already been
described for California (Underwood et al., 2010; Lydersen and North,
2012; Wiggins, 2017).

2.2. Locating reference areas

We selected study areas in the Sierra Nevada mixed-conifer zone,
where forests are dominated by a variable mix of ponderosa pine (Pinus
ponderosa), Jeffrey pine (P. jeffreyi), sugar pine (P. lambertiana), white
fir (Abies concolor), red fir (A. magnifica), and incense cedar (Calocedrus
decurrens). This corresponds with the lower-montane and upper mon-
tane forest zones of van Wagtendonk et al. (2018) (Table 1). This zone
is the center of most contemporary forest management in the Sierra
Nevada and has a greater restoration need than other forest types due to
its greater departure from characteristic fire return intervals
(25–40 years greater departure than other Sierra Nevada forest zones)
(Safford and Van de Water, 2014).

We defined reference areas across the Sierra Nevada based on
management and fire history. We restricted the study to federal lands so
that we had access to records of past management. This included all or
part of 13 National Forests and three National Parks (Fig. 1). We cre-
ated a raster layer at a 30m resolution where pixel values were scored
as integers from 0 to 5 representing how restored the fire regime of that
pixel was (Fig. 3). One point was scored for each of the following cri-
teria:

1. No records existed of past timber management (planting, harvest,
thinning, etc.);

2. The pixel had experienced at least two fires in the last 60 years, so
that a “regime” was beginning to be defined (Taylor, 2010; Lydersen
and North, 2012; van Wagtendonk et al., 2012);

3. At least one of these fires occurred within the last 30 years, so that
the results of reintroduced fire were still extant (Lydersen and
North, 2012);

4. At least one of these fires had moderate severity effects on the pixels,
because moderate severity fire kills more trees in lower canopy
strata than low severity fire, thereby doing more work to return a
fire-excluded stand to resilient conditions (Collins et al., 2011;
Becker and Lutz, 2016); and

5. The pixel had not experienced high severity effects, because high
amounts of mortality indicate low fire resistance (North et al., 2012;
Stephens et al., 2013).

Timber management history data were retrieved from the Forest
Service national geodata clearinghouse (USDA Forest Service, 2018),
supplemented by manual inspection of aerial imagery for signs of

Fig. 2. Map of layers used to classify climate – annual actual evapotranspiration
(AET), climatic water deficit (Deficit), and January minimum temperature
(Tmin) – across the study area. Data from Flint et al. (2014).
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mechanical treatment in potential reference areas. Low-intensity his-
torical logging may have been missed in this procedure. We did not
consider management history for National Parks aside from prescribed
burning, since mechanical treatments have seldom been used in park
management. Fire history was drawn from the FRAP fire atlas (Cal Fire,
2018) for years 1957–1983 and Monitoring Trends in Burn Severity
(Eidenshink et al., 2007) for years 1984–2014. The Cal Fire (2018) data
did not include spatially explicit burn severities, so we treated all
management ignitions as low severity fires throughout. Fires started by
lightning and accidental human ignition were assumed to be low se-
verity when they were small (< 400 ha) and successfully suppressed

within a 3 days. Larger fire areas from 1957 to 1983 with unknown
severity were excluded from the analysis.

Using the defined raster layer, we drew polygons around areas with
high scores (at least four, mostly five), following natural boundaries of
fire history and topography to separate areas (Fig. 3). We enforced the
following criteria for each area:

1. Patch size was at least 100 ha, to provide a meaningful sample of fire
effects within each one;

2. Any high-severity patches incorporated into the reference area were
no larger than 10 ha, since the majority of high-severity patches

Table 1
Climate class characteristics in terms of climate variables, species composition, and forest type. Values shown here are descriptive; they are not the input values used
for classification. AET=actual evapotranspiration, Tmin= annual minimum temperature. Species codes are given in Table A.1. Ecological zones, forest types, and
historical fire return intervals are as defined by van Wagtendonk et al. (2018).

Median Values

Class Reference area (area with lidar)
(ha)

Elevation (m) AET (mm) Deficit (mm) Tmin (° C) Species dominant by BA in at least 5% of
plots

Indicator species

Dry Foothills – 270 386 903 9.5 QUDO, QUWI, PISA, QUCH QUDO, QUWI
Hot Southern Foothills – 240 276 1145 9.8 QUDO, QUWI, QUCH, AECA QUDO, AECA
Warm Southern Foothills – 1280 241 1057 7.4 QUDO, QUCH, QUWI, QUKE, PIMO JUCA
Foothill Valleys – 390 553 640 9.4 PIPO, PSME, LIDE, QUWI, QUDO PSME, PIPO
Foothill-Low Montane

Transition
– 770 452 755 7.7 QUCH, PIPO, QUWI, QUKE, QUDO,

PSME, CADE
QUKE

Very Hot Low Montane – 770 545 617 7.6 PSME, PIPO, QUKE, CADE PSME, QUKE
Hot Low Montane – 1010 611 482 5.7 PIPO, CADE, PSME, LIDE, QUKE, QUCH,

ABCO
LIDE

South Sierra Low Montane 933 (0) 1740 160 927 3.9 QUCH, PIMO, PIJE, ABCO, QUWI, QUKE,
CADE

PIMO

Warm Dry Low Montane 2121 (1505) 1310 485 573 5.2 PSME, ABCO, PIPO, QUKE, CADE, QUCH PSME, QUKE
Warm Mesic Low Montane 10,221 (9379) 1670 376 620 3.5 ABCO, CADE, PSME, PIPO, PILA, PIJE CADE
Xeric Mid Montane 1713 (1150) 1470 229 756 1.9 PIJE, JUOC, ABCO, CADE, QUCH, PIPO,

PISA
PIJE, JUOC

Warm Mesic Mid Montane 0 (0) 1470 507 416 2.7 ABCO, PSME, CADE, PIPO ABCO, CADE
Cool Dry Mid Montane 10,119 (7978) 1810 359 517 1.5 ABCO, ABMA, CADE, PSME, PIPO, PIJE ABCO, ABMA
Xeric High Montane 2566 (1695) 1850 220 628 0.1 PIJE, ABCO, JUOC, PIPO, ABMA, CADE PIJE, JUOC
Cool Mesic High Montane 524 (0) 2170 443 321 0.0 ABMA, ABCO, PICO, PIMO2, PIJE, TSME ABMA, ABCO
Cool Dry High Montane 2180 (1050) 2110 298 465 −0.8 ABCO, ABMA, PICO, PIJE, PIPO ABMA, PICO
Cold Dry High Montane – 2330 224 523 −2 PIJE, PICO, ABMA, ABCO, JUOC PIJE, PICO
High Sierra – 2950 224 353 −3.5 PICO, PIAL, ABMA, PIBA PICO
High Valleys and Meadows – 2880 379 155 −3.8 PIBA PIBA
Subalpine – 3400 201 252 −5.1 PIAL, PICO, PIBA, TSME PIAL

Class Ecological zone Common forest type(s) Historical fire return interval

Dry Foothills Foothill shrubland and woodland QUDO woodland, PISA-QUWI woodland Short
Hot Southern Foothills Foothill shrubland and woodland QUDO woodland, mixed hardwood woodland Short
Warm Southern Foothills Foothill shrubland and woodland QUDO woodland, mixed hardwood woodland Short-Medium
Foothill Valleys Foothill shrubland and woodland/Lower-montane forest

transition zone
QUDO woodland, PISA-QUWI woodland, riparian
forest

Medium

Foothill-Low Montane Transition Foothill shrubland and woodland/Lower-montane forest
transition zone

Mixed hardwood woodland, QUDO woodland,
mixed evergreen

Short-Medium

Very Hot Low Montane Lower-montane forest QUKE-PIPO-ABCO-PSME forest, mixed evergreen Short
Hot Low Montane Lower-montane forest QUKE-PIPO-ABCO-PSME forest, mixed evergreen Short-Medium
South Sierra Low Montane Lower-montane forest QUKE-PIPO-ABCO-PSME forest, mixed conifer Short
Warm Dry Low Montane Lower-montane forest Mixed evergreen, mixed conifer Short
Warm Mesic Low Montane Lower-montane forest Mixed conifer Short
Xeric Mid Montane Lower-montane forest/Upper montane forest transition

zone
PIJE woodland, JUOC woodland, mixed evergreen Short

Warm Mesic Mid Montane Lower-montane forest/Upper montane forest transition
zone

Mixed conifer Short

Cool Dry Mid Montane Lower-montane forest/Upper montane forest transition
zone

Mixed conifer, PIJE woodland Short-Medium

Xeric High Montane Upper montane forest PIJE woodland, mixed conifer, JUOC woodland Medium
Cool Mesic High Montane Upper montane forest ABMA forest, PIMO2 forest, PIJE woodland Medium
Cool Dry High Montane Upper montane forest ABMA forest, PICO forest, PIJE woodland Medium-Long
Cold Dry High Montane Upper montane forest PIJE woodland, PICO forest, ABMA forest, JUOC

woodland
Medium-Long

High Sierra Upper montane forest/Subalpine forest transition zone PICO forest, PIAL woodland, ABMA forest, PIBA
woodland

Long

High Valleys and Meadows Subalpine forest PIBA woodland Long
Subalpine Subalpine forest PIAL woodland, PICO forest, PIBA woodland,

TSME forest
Long
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found historically were no more than a few hectares in size (Kilgore,
1973; Skinner and Chang, 1996; Keeley and Stephenson, 2000);

3. No more than 10% of the polygon had burned at high severity,
which is near the high end of the range of variation in historical high
severity proportions (Mallek et al., 2013 and references therein;
Stephens et al., 2015);

4. The average number of fires in the polygon was≥ 2, to ensure that
the area has, on the whole, experienced multiple fires; and

5. The average number of recent fires (< 30 yr. old) in the polygon
was≥1, to ensure that the area has, on the whole, burned recently.

These criteria ensured that polygons represent patches with a
variety of patterns, mainly characterized by pixels with a score of five
(Fig. 4). The criteria allowed for flexibility in several ways. First, even
though high-severity pixels were not favored in the pixel criteria, we
recognized that some amount of high severity fire is expected to occur
in reference areas (Collins and Stephens, 2010; Mallek et al., 2013) and
so some high-severity patches were included. We chose to make the
limits for high severity inclusion within these areas liberal relative to
published historical conditions because (1) studies capturing historical
conditions likely missed some of the largest patches and, (2) these re-
ference stands have had several fires recently but are still recovering
from decades of fire suppression, so we did not expect them to fully
match historical conditions. The criteria also allowed for unburned
patches to be incorporated within the matrix of burned lands. This is
intentional, since unburned refugia are critical elements of resilience in
post-fire landscapes (Kolden et al., 2015; Meddens et al., 2018; Meigs
and Krawchuk, 2018). In contrast, we did not allow any mechanical
treatment activity within the reference areas.

We visited 11 of the 85 identified reference areas, focusing on
northwestern Yosemite. We walked through the areas in an informal
survey guided by aerial photos and the lidar canopy models with the
goal of seeing as many different kinds of conditions as possible. We
collected notes and photographs characterizing forest structure over a

total path length of about 200 km. We used the qualitative data col-
lected in these visits to improve our interpretation of fire history data
and modified reference area boundaries in light of what we learned.
Specifically, we redrew boundaries to more closely follow topographic
features, we became stricter with excluding high severity areas, and we
decided to allow patches that had only burned at low severity when
they had burned three or more times.

2.3. Quantifying reference area structure

We used lidar data to characterize the forest structure of the re-
ference areas and provide a set of quantitative reference conditions.
Lidar data provides measurements of structure at a resolution of several
data points per square meter across areas tens to hundreds of thousands
of hectares in size, and so allowed us to quantify structural variation
across entire reference areas. We characterized structure using lidar-
identified tree-approximate objects (TAOs) (North et al., 2017;
Jeronimo et al., 2018). TAOs are an ecologically meaningful unit of
measurement representing a canopy tree that was detected by the lidar
along with subordinate trees that cannot be individually resolved. The
canopy tree may be an individual with no subordinates or may be as-
sociated with a small number of understory trees (mean 1.5 [sd 1.2]
undetected trees per TAO; S. Jeronimo, unpublished data). Using TAOs
allows for a consistent unit of analysis even while tree detection ac-
curacy changes with forest structure (Jeronimo et al., 2018). Since large
trees, which are more visible to lidar, dominate basal area and spatial
heterogeneity (Lutz et al., 2012, 2013, 2018), directly measuring pat-
terns of TAOs maintains much of the useful information that would be
gathered in a traditional tree-based survey. By necessity, this portion of
the analysis was limited to areas with available lidar data (Fig. 1;
Table 2). This included 76% of the identified reference areas, or
23,088 ha.

Across each lidar acquisition area we created ground-normalized
canopy height models using a 0.75m resolution and a 3×3 pixel
smoothing window (Jeronimo et al., 2018) and segmented the canopy
height model into TAOs using the TreeSeg tool in the FUSION Lidar
Toolkit (McGaughey, 2018). The TreeSeg tool associates each TAO with
a location and a height. We additionally modeled dbh for each TAO
using regressions developed from the 3217 FIA plots described above.
We used the following regression model form:

= bdbh height ,b
0 1 (1)

fitting a separate set of coefficients for each climate class (Table
A.2).

We split reference areas into polygons by LMU, and for each
polygon calculated summary metrics quantifying conditions in terms of
TAO size distributions, stocking, and spatial pattern. We did not at-
tempt to separate TAOs dominated by a live tree from TAOs dominated
by a snag. Size distributions were quantified in terms of modeled dbh
distributions. Stocking was quantified by TAO density and basal area
based on modeled dbh. Spatial pattern metrics followed the Individuals,
Clumps, and Openings method (ICO) (Churchill et al., 2013). TAOs
were considered members of the same clump if their high points were
within 6m of one another, and TAOs with no neighbors within 6m
were considered individuals. This limiting distance was chosen to re-
present the average crown width of a mature conifer and was validated
using plot data from Yosemite (n=97 trees, data not shown). Clump
size distributions were reported as proportions of TAOs in clumps of
different sizes: individuals, small clumps (2–4 TAOs), medium clumps
(5–9 TAOs), large clumps (10–14 TAOs), super clumps (15–30 TAOs),
and mega clumps (> 30 TAOs). Any area with no vegetation taller than
2m in the canopy height model was considered open space. We created
open space distributions to describe the amount of area at varying
distances from the nearest canopy: 0–10m in 2m bins, 10–20m,
and > 20m (Churchill et al., 2017). We delineated canopy gaps with
methods from Lydersen et al. (2013), which uses image morphology

Fig. 3. Illustration of reference patch delineation, showing some key elements
of the manual delineation methods. The background reference score (Landsat
pixel size of 30m) ranges from one to five depending on fire history (section
2.2). Constraints applied in patch delineation: (A) Stringers were cut off at a
100m width threshold. (B) High-severity patches greater than 10 ha in size
were excluded. This resulted in “donut holes” when the 100m width threshold
allowed. (C) Contiguous patches were split apart on catchment divides (pic-
tured) and fire perimeters. (D) Areas scoring mostly five were favored but areas
scoring mostly four were allowed when the only criterion not met was “at least
one moderate severity fire” and the number of fires was greater than two.
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operations to identify gaps at least 60m2 in size and cut off long
meandering gaps at ecologically relevant thresholds. Gaps were sum-
marized in terms of gap density and gap size distributions. Clumps,
open space, and gaps were all quantified across entire reference areas

before being subdivided by LMU to avoid edge effects.

Fig. 4. Photos exemplifying conditions in reference areas. (a) shows a hillslope view exhibiting a complex patch mosaic. (b), (c), and (d) show open, fire-resistant
conditions with scattered large trees and very little understory. (e) and (f) show sites that have burned fewer times or at lower severity, where stem density appears
high but most small trees are dead and surface fuel loads are low.

Table 2
Lidar acquisitions used in this study and their key technical specifications. Vendor abbreviations: WSI=Watershed Sciences, Inc. (today Quantum Spatial),
NCALM=National Center for Airborne Laser Mapping, CIS=Carnegie Institution for Science. CAO=Carnegie Airborne Observatory (Asner et al., 2007).

Acquisition Illilouette Basin Rim Fire Sequoia National Park Storrie Fire Moonlight Fire Tahoe National Forest

Mo./yr. acquired Aug. 2011 Nov. 2013 Aug. 2015 Aug. 2009 Aug. 2013 Jun. 2013
Collected by WSI NCALM CIS WSI WSI NCALM
Instrument Dual Leica ALS50 ii Optech Gemini ALTM CAO Dual Leica ALS50 ii Dual Leica ALS50 ii Optech Gemini ALTM
Max. returns per pulse 4 4 4 4 4 4
Average pulse density (# m−2) 12 12 14 7 11 8.5
Laser pulse frequency (kHz) 83 125 100 90 90 100
Field of view (°) ± 14 ±14 ±17 ±14 ±14 ±18
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2.4. Differences in reference structure across biophysical environments

To assess how structure of reference areas changes across different
biophysical environments we tested for differences in forest structure
and pattern between climate and LMU classes, including an interaction
term, using analysis of variance (ANOVA) and structural indices. We
used data from the six climate classes that had at least 100 ha of re-
ference areas with lidar coverage (Warm Dry Low Montane, Warm
Mesic Low Montane, Xeric Mid Montane, Cool Dry Mid Montane, Xeric
High Montane, and Cold Dry High Montane). The structure and pattern
indices were TAO density, TAO basal area, mean clump size, and pro-
portion of open space > 6m from the nearest canopy. These metrics
are a good summary of stocking and pattern (Churchill et al., 2013).
The indices were calculated based on LMUs within each reference area.
We confirmed that the distributions of the indices met the assumptions
of ANOVA, which required log-transforming the clump and opening
indices. We then tested for significant differences between climate and
LMU classes for each of these metrics in separate univariate two-way
ANOVAs. For any tests that gave significant results we used a Tukey
HSD post-hoc test to find significant differences between pairs of
classes.

3. Results

3.1. Climate classes

The 20 climate classes identified across the Sierra Nevada were
distinctly different in terms of AET, Deficit, Tmin, and species compo-
sition (Fig. A.2). The warmest, driest class, Dry Foothills, had a median
AET of 386mm (range 229–856mm, mean 396mm), a median Deficit
of 903mm (range 317–1202mm, mean 893mm), and a median Tmin of
9.5 °C (range 2.1–12.5 °C, mean 9.4 °C). In contrast, the coldest, wettest
class, Subalpine, had a similar median AET of 379mm (range
100–483mm, mean 207mm), a much lower median Deficit of 155mm
(range 12–767, mean 255mm), and a median Tmin of −3.8 °C (range
–8.3 to 0.9 °C, mean –5.2 °C) (Table 1). Five classes fell into the Foot-
hills category, five were Low Montane, three were Mid-Montane, four
were Upper Montane, and three were High Sierra. Geographically,
climate class groupings followed two major gradients: latitude and
elevation. A noticeable break in classification occurred around 38°N
latitude, with some higher-Deficit classes introduced south of that line.
The elevation gradient is clear, and is expressed in roughly parallel
bands running north-south along the range (Fig. 5).

Composition of FIA plots was different among climate classes
(p < 0.01). Classes in the Foothills group were dominated by oaks
(Quercus spp.) and gray pine (Pinus sabiniana), with California buckeye
(Aesculus californica) and single-leaf pinyon (P. monophylla) in the
Southern Foothills. Ponderosa pine, Douglas-fir (Pseudotsuga menziesii),
and tanoak (Lithocarpus densiflorus) occurred in Foothill Valleys and
incense-cedar additionally occurred in the Foothills-Low Montane
Transition zone. Low Montane classes were dominated by Douglas-fir,
white fir, sugar pine, incense cedar, and ponderosa pine, but red fir was
notably absent. California black oak (Q. kelloggii) was also common and
canyon live oak (Q. chrysolepis) was present. Sugar pine was most
dominant in the Warm Mesic Low Montane class. Mid-Montane classes
had a similar species assemblage but also included red fir, and Jeffrey
pine was dominant in the Xeric Mid Montane class. High Montane
classes were dominated by red fir, Jeffrey pine, and white fir, with some
of the other pines still present. Lastly, the High Sierra group was
dominated by high-altitude pines (P. contorta, P. albicaulis, and P. bal-
fouriana) with some red fir and mountain hemlock (Tsuga mertensiana)
(Table 1).

The indicator species analysis (ISA) yielded significant results for all
climate classes. Within the Montane classes Douglas-fir and California
black oak were indicators for warmer, drier classes (high AET and high
Deficit) while incense cedar indicated cooler classes (lower Tmin).

Edaphically xeric classes (low AET with high Deficit) were indicated by
Jeffrey pine and western juniper (Juniperus occidentalis). Red fir and
lodgepole pine (P. contorta) indicated classes with Tmin values at or
below 0 °C (Table 1).

There were two cases when pairs of classes shared the same primary
and secondary indicator species. The Very Hot Low Montane class and
the Warm Dry Low Montane class both had Douglas-fir and California
black oak as indicators, and the Xeric Mid Montane and Xeric High
Montane classes shared Jeffrey pine and western juniper. In both cases
PERMANOVA tests with pairwise contrasts showed significant differ-
ences in FIA plot composition (p < 0.01).

3.2. Reference areas

We identified a total of 30,377 ha of reference areas across the
Sierra Nevada mixed-conifer zone (Table 1). Median contiguous patch
size was 260 ha and the maximum was 5500 ha. Reference areas were
distributed across the latitudinal and altitudinal ranges of our study
area, mostly on the west slope of the Sierra Nevada (Fig. 1). By far the
majority of reference area was in the central and southern Sierra
(25,663 ha), concentrated in Yosemite National Park (19,990 ha) and
Sequoia-Kings Canyon National Park (3927 ha), along with 1380 ha on
the Sierra, Sequoia, and Inyo National Forests. The majority of re-
ference areas in the northern Sierra were on the Plumas and Lassen
National Forests (3532 ha) and Lassen National Park (701 ha).

3.3. Reference conditions

The envelope of reference area structure was broad and variable
(Figs. 4, 6). TAO density varied from 6 to 320 TAOs ha−1 distributed
widely across diameter classes (Fig. 6b). Typical LMUs had up to 42.9
TAOs ha−1 < 20 cm dbh, up to 29.2 TAOs ha−1 20–40 cm dbh, up to
26.0 TAOs ha−1 40–60 cm, up to 21.6 TAOs ha−1 60–80 cm, up to 15.3
TAOs ha−1 80–100 cm, and up to 7.4 TAOs ha−1 100–120 cm dbh (all
values given are 75th percentile values) (Fig. 6a). Overall density was
normally distributed (Fig. 6b) with a mean of 111 TAOs ha−1 and a
standard deviation of 40 TAOs ha−1. Basal area was distributed with a

Fig. 5. Map of climate classes. Catchments containing at least one reference
area indicated to illustrate the environmental distribution of reference areas.
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mode at 25m2 ha−1 (standard deviation 17m2 ha−1) and a right skew.
The majority of LMUs had less than 10 m2 ha−1 of basal area, but only
five percent had less than 2m2 ha−1 (Fig. 6c).

Spatial patterns of TAOs in reference areas had some consistent
patterns of variation. TAOs were most commonly arranged as in-
dividuals with no close neighbors and in clumps of 15–30 (both median
38% of TAOs per LMU). LMUs with many clumps of 2–14 or > 30
TAOs were less common (Fig. 6d). Between 25% and 40% of stand area
was usually situated in openings < 4m from the nearest canopy,
whereas less than 15% was usually > 6m from the nearest canopy.
However, as is evident in the basal area distribution, some LMUs were
very open and it was not uncommon for 10–20% of the LMU area to be
located > 10m from the nearest canopy (Fig. 6e). Delineated gaps at
least 12m in diameter were present on 94% of LMUs, usually re-
presenting < 50% of LMU area. On most LMUs the majority of gaps
were under 0.5 ha in size (median 72%), with 25% under 0.05 ha
(Fig. 6f). However, larger gaps were often present including commonly
up to 13% of gaps in the 1–5 ha size class, and 94% of total gap area
across reference areas was accounted for by gaps≥ 1 ha. Most LMUs
had 0–10% of area in gaps (Fig. 6g) at a density of 2–5 gaps ha−1, and
up to 8 gaps ha−1 was common (Fig. 6h). The highest observed gap
density was 26 ha−1.

3.4. Variation in reference structure across biophysical environments

All of the stocking and spatial pattern indices we tested varied
significantly by climate class and LMU. Density and mean clump size

also had significant climate class-LMU interaction terms (Fig. 7). Of the
six climate classes analyzed the lowest- and highest-elevation classes
had the highest densities (median 121 TAOs ha−1), following a roughly
U-shaped distribution across the elevation gradient. The Xeric Mid
Montane class had significantly lower density than any other class
(median 86 TAOs ha−1). Density was also significantly lower on ridges
compared to valleys, but the absolute difference was not large (medians
101 vs. 115 TAOs ha−1). Ridges and valleys diverged from the general
U-shaped distribution in the highest elevation class, Cold Dry High
Montane, where densities were almost as low as for the Xeric Mid
Montane class (Fig. 7). Basal area followed density in its response to
topography (slightly lower on ridges), but its relationship with climate
was more complex. The two edaphically xeric classes had lower basal
area (median 3.7 and 22m2 ha−1) as did the Warm Mesic Low Montane
class (median 13.7m2 ha−1). However, the Cool Dry Mid Montane
class, which had relatively low density, had the highest basal area
(median 31m2 ha−1). There was no significant climate class-LMU in-
teraction for basal area.

Mean clump size was indistinguishable among five of the six tested
climate classes (Fig. 7). The Cool Dry Mid Montane class had a lower
mean clump size than the rest (median 2.7 vs. 4.0 trees). Mean clump
size differed between ridges (median 3.0 trees) and other landforms
(median 3.3 trees). More pronounced was the interactive effect of cli-
mate class and LMU on mean clump size. Clump sizes were larger in
valleys compared to other landforms in the Warm Dry Low Montane,
Xeric Mid Montane, and Xeric High Montane climate classes (Fig. 7).
Southwest-facing slopes also had higher mean clump sizes in the Xeric

Fig. 6. Ranges of variation in reference condition structure across all reference areas with available lidar data. Each data point represents one landscape management
unit. TPH=TAOs per hectare, DBH=diameter at breast height, BA=basal area. Horizontal axes for panels a, e, and f show break points between bins.
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High Montane climate class. The open space index, measuring the
proportion of stand area greater than 6m from the nearest canopy edge,
varied across climate classes and LMUs almost as a mirror image of
basal area when plotted on a log scale (Fig. 7). The open space index
was lowest in the Warm Dry Low Montane class (median 0.01) and
highest in the Xeric Mid Montane class (median 0.29). Open space was
higher on ridges (median 0.074) and lower on NE-facing slopes (median

0.046), while valleys and SW slopes were transitional (median 0.056).

4. Discussion

We found that contemporary fire-dependent forests, often used to
inform restoration targets, vary by climate and topographic position,
producing an array of structural conditions that are highly variable at

Fig. 7. Structure and pattern indices varying by climate class and landscape management unit (LMU). Interaction terms are shown where significant. Letters above
box plots indicate statistically distinct groupings based on Tukey tests. Open space index refers to the proportion of area > 6m from the nearest canopy. BA=basal
area, MCS=mean clump size, TAO= tree-approximate object.
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landscape scales. Our results reaffirm the importance of managing for
wide and flexible ranges of variation at multiple scales rather than
managing for one specific condition at any one scale (Larson and
Churchill, 2012; Hessburg et al., 2015; Collins et al., 2016). Given the
complex relationship between environmental setting and reference
condition structure, it is valuable to use the most biophysically analo-
gous data available for evaluating departure from reference conditions
(Churchill et al., 2013). We found that climate classes at coarse scales
and LMUs at fine scales provided a meaningful biophysical template for
forest structure and spatial pattern. Using this framework, management
objectives for a departed landscape could be defined to produce a range
of stand structures congruent with climatic and physiographic factors
that may improve forest resilience to increasing severity and frequency
of fire and drought stresses.

4.1. Geographic and environmental distribution of reference areas

The geographic distribution of reference areas was most obviously
due to management practices associated with different land owner-
ships. We required that reference areas had no history of active forest
management such as planting, thinning, or logging. Timber manage-
ment has been widespread across National Forests of the Sierra Nevada
since the early 1900s (Laudenslayer and Darr, 1990), but has generally
not occurred in the National Parks which were protected from most
resource extraction starting in 1890 (Yosemite and Sequoia-Kings
Canyon) and 1907 (Lassen) (Parsons and van Wagtendonk, 1996).
Logging that did occur before the parks were protected was mostly
opportunistic and small-scale (Laudenslayer and Darr, 1990). Second,
fire policy has been very different between National Forests versus
National Parks in the Sierra Nevada, especially since the early 1970s
when the parks began phasing out full suppression policies and
adopting instead active prescribed fire and managed wildfire programs
(Parsons and Botti, 1996; van Wagtendonk, 2007; van Wagtendonk and
Lutz, 2007). In contrast, National Forests started using prescribed
burning more recently and have adopted managed wildfire primarily in
designated wilderness (Stephens and Ruth, 2005). This in large part
accounts for the fact that 81% of the reference area in the Sierra Nevada
mixed-conifer zone is in National Parks, even while the parks represent
less than 13% of the federal land base in the Sierra Nevada.

Some part of the distribution of reference areas can also be attrib-
uted to environmental conditions, in particular, lightning strikes.
Lightning ignitions are an important environmental factor in Sierra
Nevada fire regimes, since essentially all of the montane forest is dry
enough to burn during the annual summer drought (Lutz et al., 2009).
Lightning strike density varies with elevation across the Sierra, peaking
in the 1800–2400m elevation band (van Wagtendonk, 1994; van
Wagtendonk and Cayan, 2008). This may explain why there were no
reference areas in the two lowest-altitude montane climate classes
(Very Hot Low Montane, Hot Low Montane). The elevation band that
these classes primarily occupy, 600–1200m, receives less than half as
many lightning strikes of any of the other montane classes, and less
than a quarter as many strikes as the three highest-elevation montane
classes (van Wagtendonk and Cayan, 2008). Another explanation may
be the tendency of forests in this elevation band to burn in human-
caused fires with large high-severity patches.

A final factor that influenced the distribution of reference areas was
the 2013 Rim fire. The Rim fire burned 31,519 ha of western Yosemite
(Lydersen et al., 2014), reburning a series of fires from the 1980s to
2000s that had substantial lower-severity components. This initial
series of fires primed western Yosemite for a subsequent lower-severity
burn. Although the Rim fire burned at high severity on the adjacent
Stanislaus National Forest, severity in Yosemite was much more mixed
in part because of the previous fire history (Lydersen et al., 2014; Kane
et al., 2015a; Lydersen et al., 2017). Over half of the reference areas in
Yosemite only met our criteria after being burned by the Rim fire.

4.2. Ranges of variation in reference stand structure and pattern

The ranges of variation in density that we measured in reference
areas generally matched ranges reported by past studies quantifying
active-fire Sierra Nevada forest structure. For example, several re-
constructed and historical datasets report mean densities ranging from
60 to 314 TAOs ha−1, with total density ranges from 16 to 650 TAOs
ha−1 (minimum dbh values varied from 5 to 15.2 cm) (North et al.,
2007; Scholl and Taylor, 2010; Collins et al., 2011; Van de Water and
North, 2011; Knapp et al., 2013; Barth et al., 2015; Stephens et al.,
2015). This matches well with our measured mean density of 111 TAOs
ha−1 (range 6–320), even when considering that each TAO may re-
present both the identified overstory tree and up to several subordinate
trees. These same studies report mean basal area between 21 and 54m2

ha−1 with a range of 0.3–89m2 ha−1, compared to our mean basal area
of 25m2 ha−1 (range 0.01–113). This alignment indicates that the re-
ference areas we identified exhibit some of the key structural features
associated with historically resilient stands, namely, lower densities
than contemporary fire-suppressed forests and dominance by large trees
(North et al., 2009; Stephens et al., 2015; Safford and Stevens, 2017).
However, dominance by large trees was not observed in every reference
area. In particular, small old trees (often 10–20 cm dbh observed during
field visits) dominated the Xeric Mid-Montane climate class, which is
characterized by shallow, gravelly soils with very sparse forest cover
and stringers of denser cover in patches of convergent topography.

In contrast, correspondence between our measurements of spatial
pattern and reported measurements for historical Sierra Nevada forests
was mixed. We are aware of only one study using spatially-explicit data
to describe historical spatial patterns in the Sierra Nevada: Lydersen
et al. (2013) used 1929 stem map data from the “Methods of Cutting”
experiment on the Stanislaus-Tuolumne Experimental Forest to quan-
tify tree clumps and canopy opening patterns. Our measurements of
TAO clumps did not directly align with their measurements of tree
clumps. Specifically, we measured a higher proportion of individuals
(38% vs. 5.6%) and a lower proportion of small clumps of 2–4 trees/
TAOs (4.2% vs. 13.4%). This is probably because many TAOs counted
as individuals actually represent two or three trees. In this sense our
data and the data from Lydersen et al. (2013) are not directly com-
parable. However, measurements of open space do not rely on tree
counts and so can be directly compared. Our average measurements
were similar to the Methods of Cutting plots. Lydersen et al. (2013)
found 40% of plot area was in open space < 3m from the nearest
canopy compared to our finding of 25–40% within 4m. The Methods of
Cutting plots averaged 5.2 delineated gaps ha−1 compared to our
4.1 ha−1, and the distributions of gap sizes were also comparable. We
additionally identified many large gaps (> 10 ha) that were not pos-
sible to detect with the 4 ha plots used by Lydersen et al. (2013).

Contemporary measurements of spatial pattern in the active-fire
Sierra San Pedro Martir in northern Baja California, Mexico provide
another point of reference. Fry et al. (2014) found that 10–14% of trees
in Jeffrey pine-mixed conifer stands were individuals with no close
neighbors, while 20–25% of trees were in small clumps and 18–24% of
trees were in medium clumps of 5–9 trees. These proportions represent
a somewhat less clumped stand than the Lydersen et al. (2013) data
(more individuals and small clumps, fewer large clumps), but compare
to our findings similarly. That is, we found higher proportions of in-
dividuals and lower proportions of small clumps overall.

4.3. Variation in reference structure across biophysical environments

Patterns of variation in active-fire forest structure are very complex,
driven by multiple interactions between fire, topography, and moisture
(Kane et al., 2013, 2015a; Collins et al., 2016). Some of this variation
can be explained by elevation, water balance, and topographic position.
For example, Collins et al. (2015) found that elevation and AET strongly
differentiated between different classes of tree size and stand basal
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area. Kane et al. (2015b) found that AET and Deficit, along with slope
and topographic position, were good predictors of canopy cover and
tree height in twice-burned stands. Lydersen and North (2012) found
gradients of tree size and density associated with slope position, which
differentiated between structural conditions better than aspect did.
However, there was residual variation around these patterns in all
cases. Our results suggest that the way the biophysical environment
drives structure in active-fire landscapes is context-dependent, which
may partially account for high amounts of unexplained variation in
earlier research. This agrees with findings of Abella et al. (2015) from
the Spring Mountains of Nevada. Here we provide examples illustrating
the complex context dependency in relationships between the biophy-
sical environment and structure (Fig. 8).

We found that ridgetops had lower density, lower basal area,
smaller tree clumps, and more open space than other landforms (Fig. 7).
This matches descriptions by Lydersen and North (2012), who suggest
that ridges uniquely combine lower productivity with more severe fire
effects (i.e., more fire mortality) to result in a fundamentally different
growing environment than other landforms. However, climate condi-
tions can alter or enhance this relationship. For instance, the basic re-
lationship between landform and density is reversed in the Xeric High
Montane climate class, where ridges are similar to NE slopes while SW
slopes have the lowest density (Fig. 7). One possible explanation is that
this climate class is characterized by shallow, rocky soils throughout, so
ridgetop soil conditions are not very different from other landforms.
This normalization of landform effects may allow the (usually less im-
portant) effect of aspect on insolation to be expressed in the form of
reduced density on SW slopes. In contrast, the relationship between
landform and density is enhanced in the Cold Dry High Montane class,
where ridgetop density was lower than density on other landforms by a
much greater margin than in any other climate class (Fig. 7). One
possible explanation for this pattern is that ridges in this climate class,
which was the only sampled climate class with average Tmin values
below 0 °C (Fig. A.2), experience strong winds carrying damaging ice
crystals more commonly than warmer classes, and so the uniquely
difficult growing environment found on ridges is made even more dif-
ficult relative to other climate classes.

A strongly context-dependent relationship was observed between
landform and mean clump size. Overall, clump sizes in valleys were not
significantly different than for any other landform; however, in the
warmest and driest climate classes, valleys had significantly larger
clumps on average. For the Xeric Mid Montane and Xeric High Montane
classes the difference was approximately a factor of 2, while the Warm
Dry Low Montane class, the hottest class sampled, the difference was a
factor of over 100 (Fig. 7). This pattern, along with the patterns related
to ridgetops discussed above, suggests that while broad conclusions
about structural variation across elevation, water balance, and topo-
graphy may be helpful guideposts, the signs and magnitudes of re-
lationships between these factors and structure are not consistent across
biophysical space.

The U-shaped distribution of density and basal area with increasing
elevation within the six montane classes under study (Fig. 7) runs
counter to the expectation that stand density should increase approxi-
mately monotonically with elevation due to the combination of oro-
graphic precipitation and longer fire return intervals (van Wagtendonk
et al., 2018). This can be explained by considering actual evapo-
transpiration – a surrogate for productivity (Stephenson, 1998) – in-
stead of precipitation. Actual evapotranspiration was negatively cor-
related with elevation for the montane climate classes (r=−0.33,
Table 1), suggesting that lower densities in the mid-montane classes
may be due to lower productivity coupled with similarly frequent fire
compared to the low-montane classes. This effect was clearer than the
effect of recent fire regimes. We were not able to find any statistical
relationships between recent fire severity and climate classes, and fire
regimes have not been reestablished long enough to test for effects of
fire frequency.

One limitation to the model discussed in this section is that our
study design did not fully address potential spatial autocorrelation of
LMUs. Adjacent LMUs within the same or adjacent reference areas are
more likely to have similar fire history, be structurally similar, and be in
the same climate class. Although we did not sample enough sites to
control for this factor, we suggest that, at least from a management
perspective, LMUs can be considered independently.

Fig. 8. Example illustrating context-depen-
dent relationships of climate and landform
driving structure and pattern in reference
areas, as is quantitatively shown in Fig. 7. In
mesic conditions, density and spatial pat-
terns are similar between ridges and valleys;
only the sizes of trees differ. In xeric condi-
tions trees are still larger in valleys than on
ridges, but density and mean clump size are
also higher in valleys.
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4.4. Using reference condition data in forest management

The structural data for Sierra Nevada reference areas presented here
are intended to be applied to forest restoration planning and treat-
ments. The envelopes of forest structure indices (Fig. 6) can provide
quantitative waypoints for interpreting current conditions and planning
restoration treatments or comparing to post-treatment conditions for
monitoring. Further research formalizing the inclusion of lidar-mea-
sured structure and spatial pattern into forest restoration planning is
currently underway.

Evaluating departure from the reference conditions presented here
is more straightforward if lidar data are available for the departed area
under analysis. This allows for consistent data processing and direct
comparisons between two TAO-based sets of metrics. However, the
reference conditions we report can also be compared to ground-based
measurements (i.e., tree lists) as long as the limitations of lidar mea-
surements are accounted for. Specifically, each TAO may represent
between one and several trees, and so measures of TAO density and
clump sizes will be smaller than measures of tree density and clump
sizes. For these measures our results can be taken as a lower range
estimate. On the other hand, our results for basal area should be close to
the actual values, since lidar accurately captures the larger trees that
constitute most of the basal area (Lutz et al., 2012; Jeronimo et al.,
2018). Similarly, since lidar is very effective at measuring canopy gaps
our results for the open space index should be very similar to results
from a field-measured stem map (Koukoulas and Blackburn, 2004).

Our results indicate that fire use has been an effective restoration
tool where implemented, since the reference areas we identified are
apparently set to continue burning at lower severity and are structurally
similar to historical forest conditions that are thought to be resilient.
Nevertheless, Sierra Nevada forest managers have been conservative in
fire reintroduction and the rate of restoration lags behind regional
targets (North et al., 2015; Stephens et al., 2016). This research pro-
vides strong support for increasing the use of restorative fire in the
Sierra Nevada.

4.5. Limitations

An important drawback to using lidar measurements as the sole data
source is that there are no composition data to go along with the
structural measurements. Composition data must come from other
sources such as modeling or imputation from structure, Landsat or other
spectral data sources, or field surveys (Jeronimo et al., 2018). Lidar is
also only able to characterize the shrub layer in general terms
(Martinuzzi et al., 2009), which can be a problem since shrubs, as an-
giosperms, are a key element of mammal and bird diets in the Sierra
Nevada (Lutz et al., 2014, 2017). However, the reference conditions we
provide here are associated with species assemblages (Table 1). Since
restoration treatments typically favor fire- and drought-tolerant species
it should be clear which species will be expected for retention in a given
climate class. Nevertheless, field visits and silvicultural knowledge will
still be necessary to set realistic composition targets.

Another limitation of lidar is a difficulty differentiating live trees
from dead trees. Some studies have used return intensity data to esti-
mate dead tree parameters (e.g., Kim et al., 2009), but no method has
yet been widely accepted and no study has been done at the TAO or
equivalent scale. For these reasons we chose not to separate TAOs
dominated by a live tree from TAOs dominated by a dead tree in our
analyses. This may be consequential for some reference areas. For ex-
ample, lidar data for areas within the Rim Fire were collected only
8–12 weeks after initial burning, probably before much of the mortality
from that fire was actually discernible from lidar. We justify our in-
clusion of these data in two ways. Since we focused on areas that
burned at low and moderate severities (1) we expect that much of the
mortality was concentrated in smaller size classes, not in the larger
trees that dominate TAOs, and (2) even when the measurements we

report represent something closer to pre-fire structure than post-fire
structure, that structure led to low and moderate severity burning and
thus can be considered a desirable condition.

While the reference areas we present have experienced some fire
reintroduction, they also previously experienced decades of fire sup-
pression and other anthropogenic disturbances (e.g., grazing). We do
not claim that these forests are fully restored nor that they are in the
most resilient condition possible. Nevertheless, these areas have burned
multiple times and are still forested with a degree of heterogeneity
comparable to historical measurements. They are the best extant ex-
amples of Sierra Nevada mixed-conifer forests under an active fire re-
gime.

In this study we have analyzed and presented results representing
ranges of structure at scales of topographic facets with areas mostly
around 2–20 ha. However, spatial heterogeneity in forest structure also
occurs across broader scales: landscape conditions are a mix of a tree
clump and canopy opening patch mosaic, shrubland and herbland
covering dozens of hectares of potential forest sites, and some large
aggregations of closed-canopy forest (Hessburg et al., 2005; Kane et al.,
2014). Analyzing these reference areas in terms of landscape patches
(e.g. seral stages sensu Gärtner et al., 2008) would be a valuable com-
plement to the finer-scale data we have presented here.

5. Conclusions

Forest structure in active-fire landscapes is highly variable at mul-
tiple scales (Fry et al., 2014; Belote et al., 2015; Collins et al., 2016).
Measuring reference conditions across contemporary active-fire land-
scapes using lidar affords some key advantages over historical reference
conditions and field-based sampling. The Sierra Nevada region may be
unique in having broad lidar coverage coupled with large areas of re-
introduced fire. This allowed us to quantify landscape features over
reference areas on the scale of hundreds to thousands of hectares that
would not have been practically measurable with reconstruction tech-
niques or using ground-based surveys. We captured the full range of
structural variability present in the reference areas, including dense
aggregations of hundreds of trees as well as large meandering openings
snaking across dozens of hectares. While our novel techniques provided
some new insights into forest structure under active fire conditions, our
findings also confirmed past research indicating that frequent lower-
severity fire leads to highly variable landscapes patterned after climatic
and topographic gradients.

Conflict of interest

None.

Acknowledgements

Thanks to Brian Harvey, Monika Moskal, and Abby Swann for ex-
cellent guidance and advice in designing this study and preparing this
manuscript. Thanks to Bob McGaughey for his continued development
and collaboration on tools for measuring forest structure and pattern
with lidar. Thanks to Jonathan Kane, Tristan O’Mara, Bryce Bartl-
Geller, and Hailey Wiggins for assistance with lidar processing tasks.
Thanks to Kendall Becker, Jamie Lydersen, and Brandon Collins for
their insights and advice on criteria for identifying reference areas.
Thanks to Derek Young for many thoughtful discussions about water
balance modeling. Thanks to Scott Conway, Carlos Ramirez, and Hugh
Safford for feedback on an earlier version of this work. Thanks to two
anonymous reviewers for valuable comments that improved this
manuscript.

This work was supported by the USDA Forest Service Pacific
Southwest Research Station (Joint Venture Agreement 14-JV-
11272139-014 “Using LiDAR to Guide Restoration in Sierra Nevada
Forests” and Challenge Cost Share Agreement 13-CS-11052007-055

S.M.A. Jeronimo et al. Forest Ecology and Management 437 (2019) 70–86

81



“Using Light Detection and Ranging (LiDAR) to Guide Burned
Landscape Recovery and Restoration in Sierra Nevada Forests”) and by
the USDA Forest Service Colville National Forest (Joint Venture
Agreement 13-JV-11062104-031 “Northeast Washington Vision 2020
Monitoring Plan”). Carnegie Airborne Observatory data collection and
processing were funded by the David and Lucile Packard Foundation
and the US National Park Service. The Carnegie Airborne Observatory

has been made possible by grants and donations to G.P. Asner from the
Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and
Lucile Packard Foundation, Gordon and Betty Moore Foundation,
Grantham Foundation for the Protection of the Environment, W.M.
Keck Foundation, John D. and Catherine T. MacArthur Foundation,
Andrew Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard
Baker Jr., and William R. Hearst III.

Appendix A:. Additional tables and figures

See Tables A1 and A2.

Table A1
Species codes, Latin names, and common names key for Table 1.

Species code Latin name Common name

ABCO Abies concolor White fir
ABMA Abies magnifica Red fir
AECA Aesculus californica California buckeye
CADE Calocedrus decurrens Incense-cedar
JUCA Juniperus californica California juniper
JUOC Juniperus occidentalis Western juniper
LIDE Lithocarpus densiflorus Tanoak
PIAL Pinus ablicaulis Whitebark pine
PIBA Pinus baulforiana Foxtail pine
PICO Pinus contorta Lodgepole pine
PIJE Pinus jeffreyi Jeffrey pine
PILA Pinus lambertiana Sugar pine
PIMO Pinus monophylla Single-leaf pinyon
PIMO2 Pinus monticola Western white pine
PIPO Pinus ponderosa Ponderosa pine
PISA Pinus sabiniana Gray pine
PSME Pseudotsuga menziesii Douglas-fir
QUCH Quercus chrysolepis Canyon live oak
QUDO Quercus douglasii Blue oak
QUKE Quercus kelloggii Black oak
QUWI Quercus wislizeni Interior live oak
TSME Tsuga mertensiana Mountain hemlock

Table A2
Model coefficients and statistics for height-diameter regressions on forest inventory and analysis plots within each climate class (total number of plots= 3217).
Model form is = bdbh heightb

0 1, with dbh in cm and height in m.

Data used to build model

Class b0 b1 r2 RMSE (cm) N plots N trees DBH min (cm) DBH max (cm) Height min (m) Height max (m)

1 1.53856 1.14648 0.64 3.99 216 3179 2.5 121.2 1.2 45.1
2 2.72283 1.02325 0.61 3.38 31 304 3.6 101.3 2.7 30.5
3 2.05648 1.15830 0.70 4.29 69 1310 2.5 115.1 0.9 34.4
4 1.14798 1.12029 0.86 5.09 21 654 2.5 149.6 2.7 64.6
5 1.37670 1.10943 0.79 4.73 460 13,524 2.5 209.0 1.8 68.9
6 1.19206 1.12831 0.86 5.06 88 3311 2.5 182.6 1.8 68.9
7 1.07742 1.16068 0.84 5.16 27 1091 2.5 161.0 2.1 60.4
8 3.03182 0.95797 0.64 5.64 30 723 2.5 158.2 1.5 46.3
9 1.44673 1.08746 0.86 4.74 335 13,501 2.5 203.2 0.9 70.1
10 1.69328 1.05785 0.86 5.10 224 8712 2.5 245.6 1.5 75.6
11 2.31671 1.00310 0.81 5.60 113 2251 2.5 157.5 1.2 51.8
12 1.40413 1.10804 0.86 4.78 62 2414 2.5 177.8 1.8 60.7
13 1.78311 1.04917 0.85 5.32 356 13,568 2.5 216.7 0.6 80.5
14 2.82546 0.92227 0.75 5.58 312 8589 2.5 164.6 0.3 59.4
15 1.93072 1.04232 0.84 5.77 127 4231 2.5 201.4 0.9 59.4
16 1.91499 1.06052 0.83 6.33 328 10,398 2.5 261.9 0.6 59.4
17 2.05270 1.06432 0.79 6.15 233 6498 2.5 176.8 0.9 67.1
18 2.58053 1.00908 0.74 7.68 164 5082 2.5 196.3 1.2 57.9
19 15.64717 0.67221 0.44 5.68 1 34 56.4 127.3 8.2 17.4
20 2.96029 1.02971 0.72 8.15 44 990 2.5 154.2 1.5 33.2
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See Figs. A1 and A2.

Fig. A1. Cluster dendrogram for climate classes.
The labels at the second split indicate broad cli-
mate zones. Labels along the bottom are names of
the 20 final climate classes (red boxes), inter-
preted by inspecting this graphic as well as Fig.
A.2. (For interpretation of the references to colour
in this figure legend, the reader is referred to the
web version of this article.)
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Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.foreco.2019.01.033.
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