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A B S T R A C T   

Drawing upon over 100 years of scholarly work on microclimate, we first present an overview of the history, key 
references, and critical issues surrounding the collection and utilization of microclimate records in ecosystem 
studies. We place particular emphasis on addressing specific and pressing issues related to the applications of 
microclimate at the community-ecosystem-landscape level, excluding those of controlled experiment such as 
growth chambers and greenhouses. Specifically, we: (1) highlight some key issues concerning the collection, 
quality assurance/quality control (QA/QC), and utilization of microclimatic data in ecosystem studies; (2) revisit 
microclimatic responses to the structural changes of ecosystems and landscapes; and (3) emphasize the signifi-
cance of microclimate in understanding major ecosystem/landscape processes and functions. Vapor pressure 
deficit (VPD) is particularly emphasized for its calculation and use because of its burgeoning applications in the 
literature. Case studies for each of the three thematic topics are provided with selected references to demonstrate 
challenges and solutions. As the scientific community gears up to enhance microclimatic stations, we envision 
significant increases in the use of smart sensors, wireless access, networking, open databases, and computational 
capabilities. Understanding and addressing some of the issues raised in this synthesis paper may help advance 
microclimate research and foster collaboration with other relevant disciplines, such as ecosystem science.   

1. Introduction 

Microclimate, also referred to as micro-climate, is generally defined 
as the climate near the Earth’s surface (Geiger, 1965). Although the 
origin of this term is unknown, our search across many available data-
bases (January 18, 2024) found the earliest documented use of the term 
in research presented by Roussakov (1924) in the proceedings of an 
annual meeting held in Russia (Fig. 1a). Geiger (1965) also notes that 
"directed attention, as long ago as 1929, to a need for inquiring whether 
in judging microclimate...." (p. 249). Wolfe (1951) delved into the study 
of microclimate and macroclimate in central Ohio, building upon earlier 
work documented in Wolfe et al. (1943, 1949), where these authors 
employed the term as if it were already an established concept. 
Evidently, the term microclimate was introduced around the 1920s, 
gained widespread acceptance by the late 1940s (e.g., Matthews, 1937), 
and became prominently utilized in the 1950s and thereafter (Shanks 
and Norris, 1950; Franklin, 1955). 

Scientific progress in the study of microclimates has been propelled 
by scholars across diverse disciplines, including ecology, meteorology, 
plant science, agriculture, and forestry, with these disciplines being 
prominent in the application of the term (Fig. 1). The terms ‘microcli-
mate’ and ‘micro-climate’ were used in 9117 titles in the publications 
indexed in the Web of Science Core Collection, spanning 291 sub-
disciplines. A search for these terms as keywords in the body of research 
papers, we found that they were used in a total of 43,188 publications, 
including books, proceedings, meetings, graduate theses, and patents. If 
related keywords, such as ‘temperature’ and ‘soil moisture’ were added 
to our search, both the publication count and citation rates would likely 
be substantially higher. Since Geiger’s seminal work in 1965, several key 
publications have significantly contributed to advancing the field. 
Notable among these are works by Fritschen and Gay (1979); Rosenberg 
et al. (1983); Jones (1985); Camuffo (1998); Chen et al. (1999); Harlan 
et al. (2006); Erell et al. (2012); Potter et al. (2013); Campbell and 
Norman (2000); Barry and Blanken (2016); Bramer et al. (2018); Chen 
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(2021), and Kemppinen et al. (2024). 
The impact of the physical environment, encompassing both climate 

and microclimate, on nature and humans has been acknowledged since 
the inception of human civilization (National Research Council, 2010) 
and the advent of modern science (Heymann, 2010). Eratosthenes (276 
BCE - 194 BCE), a Greek mathematician, astronomer, geographer, and 
librarian in ancient Alexandria, is credited as one of the earliest scholars 
to coin the term ‘climate’ for the purpose of differentiating global re-
gions based on solar radiation (Altmann, 2005). In his influential book, 
On Airs, Waters, and Places, Eratosthenes explored the impact of climate 
on human health, cultural disparities, and natural landscapes in Europe 
and Asia. The societal structure formed in the Fertile Crescent, serving as 
a habitation 8000 years ago for migrants emerging from arid regions in 
northern Africa, was partially influenced by its favorable climate adja-
cent to the Mediterranean Sea (Diamond, 1997). Similarly, centrally 
located countries like Greece thrived due to their favorable climate, as 
noted by Hippocrates (Heymann, 2010). In China, the climate 
throughout a year was officially divided into “24 Solar Terms” in 110 
BCE to guide farming activities in the Yellow River Basin. Since the 
eighteenth century, as the scientific community progressed towards a 
mechanistic understanding of natural processes, the spatial and tem-
poral characteristics of microclimates became integral components in 
observational, experimental, and modeling studies in the natural 
sciences. 

In the realm of ecosystem studies, microclimatic measurements have 
found widespread utility in predicting various phenomena and pro-
cesses. Examples include modeling photosynthesis from light, specif-
ically photosynthetically-active radiation (PAR) (Michaelis and Menten, 
1913) and forecasting soil respiration based on temperature using the 
Q10 model (Van’t Holf, 1884). Significant scientific initiatives involving 
microclimate were championed by the Food and Agriculture Organiza-
tion (FAO), particularly in modeling water loss as evapotranspiration 
(ET) to schedule irrigations in agriculture (Monteith, 1965). The 
Penman-Monteith model, which abstracts ecosystems as a single “big 
leaf,” is a product of these efforts and is now extensively utilized in 
contemporary ecosystem studies. For carbon assimilation, microclimatic 
variables such as PAR, temperature, vapor pressure deficit (VPD), and 
CO2 concentration serve as essential drivers in modeling photosynthesis 

(Farquhar et al., 1980; Ball et al., 1987; Chen, 2021). Similarly, widely 
applied models in water evaporation within natural ecosystems feature 
microclimatic variables as major drivers (Penman, 1948; Thornthwaite, 
1948; Priestley and Taylor, 1972; Jarvis, 1976). As the climate has un-
dergone rapid changes and the necessity has arisen to model its impact 
on ecosystems, coupled with advancements in sensors, microclimatic 
observation networks, satellites, computational technology, and data 
availability, microclimate has become increasingly integrated into the 
understanding and modeling of ecosystem processes across various 
spatial and temporal scales (Norman, 1979; Farquhar et al., 1980; Chen 
et al., 1993b; Brosofske et al., 1997; Saunders et al., 1998 & 1999; Chen, 
2021; Zou et al., 2024). The “climatic determinism” paradigm intro-
duced by Eratosthenes, as highlighted by Heymann (2010), has proven 
to be remarkably useful throughout scientific history and continues to 
hold significance in contemporary ecosystem studies. We will use this as 
our basic set of assessments here. Other perspectives on environmental 
sciences, including those involving microclimatology, exist amongst 
various cultures, including indigenous peoples (Hernandez, 2022). 

This article does not aim to provide a comprehensive, detailed, or 
exhaustive review of microclimatic research in ecology. Instead, our 
focus is on addressing a few specific and pressing issues related to the 
applications of microclimate at the community-ecosystem-landscape 
level, excluding considerations within enclosed environments (e.g., 
growth chamber, greenhouse, lab incubation, and indoor climate). Our 
specific objectives are: (1) highlighting key issues concerning the 
collection, quality assurance/quality control (QA/QC), and utilization of 
microclimatic data in ecosystem studies; (2) revisiting microclimatic 
responses to the structural changes of ecosystems and landscapes; and 
(3) emphasizing the significance of microclimate in modeling major 
ecosystem/landscape processes and functions. Our intention is to 
selectively include only key references in our introduction and subse-
quent discussions, acknowledging that this work is not a comprehensive 
listing of the vast existing literature on this subject (e.g., Fig. 1). 

1.1. Microclimate: measurements, data, and applications 

Microclimate research focuses on studying the climate in close 
proximity to a specific object of analysis, such as a cell, leaf, organism, 
community of plants or animals, or landscape. The nature of this 
research is contingent upon the questions posed and the targeted pro-
cesses under investigation. While microclimate predominantly pertains 
to atmospheric properties like light, air temperature and humidity, 
carbon dioxide and other trace gas concentrations, pressure, precipita-
tion, wind speed and direction, cloud cover, and pollution, it also en-
compasses the physical properties of soil, water, and the objects being 
studied. This includes aspects such as soil temperature and moisture, 
fuel moisture, turbidity of water, etc., as often documented in micro-
climatic studies in the existing literature (Unwin, 1980). However, there 
are notable variations in the definition and interpretation of microcli-
mate. According to Rotach and Calanca (2003), the microclimate of a 
specific location can be defined as “the statistical state of the atmosphere 
in the layer directly influenced by the characteristics of the underlying 
surface.” This definition underscores the significance of land surface 
properties in shaping microclimatic conditions but technically would 
include the climate of the planetary boundary layer (i.e., the lowest part 
of the atmosphere that is directly influenced by its contact with the 
Earth’s surface, ranging from a few hundred meters to about 2 km). 
However, certain microclimatic characteristics and dynamics may 
depend significantly on regional conditions, irrespective of land surface 
characteristics. For instance, aerosols that alter the total amount and 
distribution of solar radiation in urban settings may have originated 
from nearby or distant emissions (i.e., spillover effects) (Chen et al., 
2016). Such climatic conditions, resulting from human activities or 
natural disturbances and large-scale advections, are common subjects of 
investigation in ecosystem and landscape research. 

With the increasing number of microclimatic stations worldwide, 

Fig. 1. (a) Changes in the number of occasions during 1637–2024 when the 
terms ‘microclimate’ and ‘micro-climate’ were used in publication titles based 
on a search of the Web of Science Core Collections on 18 January 2024. 
Selected milestone publications are highlighted. (b) The number of times of 
these terms appeared in publications in 25 top-ranked subdisciplines (of 291). 
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improvements in automated sensors, dataloggers and networking sys-
tems, and open access to a large amount of station data, ecosystem 
studies have escalated their use of microclimatic records. ‘Surface’ 
weather stations that are used for synoptic scale weather forecasting 
have historically been used in ecosystem studies because of their prev-
alence and long historical records. Ecosystem modeling at community- 
global scales has been eased by long-term global flux network moni-
toring that includes microclimatic variables for their varied landscapes 
(Baldocchi et al., 2001). 

Because of the substantial contributions and irreplaceable roles of 
microclimatic input in promoting ecosystem science, critical attention is 
needed for using these data by following essential steps. Networks and 
even individual local stations must follow specific procedures to prepare 
data for use in ecosystem research. The steps for these are outlined well 
in Figure 2.1 of the World Meteorological Organization’s Instruments and 
Observing Methods (WMO, 1993). A variable must be measured (with 
potentials for inaccuracy, etc.); the transduced variable created by the 
sensors must be recorded or logged; the logged data must be gathered or 
transmitted; the data must be checked; and the data must be corrected, 
for example calibrated and gap filled when there is missing data and 
complete datasets are needed. Then an ecosystem researcher may need 
to orchestrate additional corrections, processing and storage of the data 
as the analysis proceeds. Each of these steps is generally affected by 
researcher perspective and assumptions, as well as differences between 
research labs, government agencies and individual researchers (Fee, 
1982; Imber and Tuana, 1988; Crasnow, 2009). Given these issues, each 
researcher should scrutinize their own perspectives when utilizing 
microclimatic data and be especially aware of such issues when 
combining data from different networks and stations. 

Depending on the network or research team, global weather and 
microclimatic stations are not all installed and maintained using the 
same standards for where they were established, including height, local 
landscape conditions, sensor types, calibration protocols, etc. The sen-
sors of a standard synoptic scale weather station are typically mounted 
at a height of 2 m above the ground to measure air temperature, hu-
midity, wind speed, and other parameters, with the station located in an 
open area, though synoptic weather stations may have wind speed 
measured at a higher level, such as 10 m, for World Meteorological 
Organization (WMO) surface stations. Recognizing that various net-
works and research teams design their weather stations to meet specific 
objectives, users need to review station and network designs to ensure 
microclimatic data capability. Stations from different network programs 
and countries are not all the same, even the stations of the WMO. For 
example, it is not unusual to see stations on roadsides, airports, building 
rooftops, etc. The magnitude and dynamics of some microclimatic var-
iables (e.g., temperature, wind speed) from these stations are signifi-
cantly affected by the surrounding landscape structure and, thus, cannot 
be directly compared or used in the same way for modeling an ecosystem 
process. Where such features influence data, constructed empirical (or 
mechanistic) models will find limited applicable cases across a land-
scape, or even yield false predictions and high uncertainty. 

For example, the Q10 model has been widely used to predict 
ecosystem respiration using air temperature at eddy-covariance flux 
towers (Black et al., 1996). In an idealized Q10 model the biota’s tem-
perature is assumed to control respiration, but normally only air tem-
peratures are available from weather stations, rather than the biotic and 
soil temperature. There is the additional complication that air temper-
atures may be recorded at different heights, with sensors of varied fre-
quency response, accuracy, and precision, suggesting that the residuals 
for best fit of respiration to a Q10 model will be large, and estimated 
coefficients among the sites (e.g., the Q10 values) could be difficult to 
compare. Recording intervals can vary from less than 30 min to 6–24 h 
or even longer. Measurements taken at coarser temporal resolutions (e. 
g., 3+ hours) will not reflect extremes, whereas high-frequency records 
produce large datasets and may include rare events that skew mean and 
variation of a microclimatic variable when data are presented at 

diurnal-monthly-yearly scales. Models constructed using these micro-
climatic data could carry large uncertainties and should only be applied 
in different locations and times, even when assuming the sensors are 
reliable and have similar precisions, by accounting and correcting for 
these other complicating factors. Reporting the uncertainties associated 
with microclimate means (e.g., variations, minimum, maximum, me-
dian, etc.) is highly recommended. Here, it is worth mentioning that 
some microclimatic variables are less sensitive to station height (e.g., 
incoming solar radiation) or logging intervals and sensor frequency 
response (e.g., ground water table and soil moisture). Clearly, careful 
examinations of microclimatic locality of stations, sensors, and sampling 
protocols are needed prior to any applications. One simple but impor-
tant precaution is examination of the time stamping of records – that is, 
does it record local time, daylight savings time, UTC, or other time 
protocols, and does it represent the beginning, middle, or end of the 
measurement period? 

Weather station location and the local microclimate and landscape 
type can strongly influence measurements. Network station protocols 
(WMO, 1993, 2021) recognize that all weather stations and their sensors 
experience their own microclimate, and their data can be influenced by 
local landscape features such as well-watered lawns, bare soil, asphalt, 
buildings structures close to the station, and location within or above 
canopy. Closely linked to this is the fetch effects of landscape type for the 
sensors, meaning a station should be situated within a landscape type in 
such a way as to avoid influences caused by other landscape types sur-
rounding the station (WMO 1993, 2021). 

Data collected from microclimatic stations might not consistently 
meet high-quality standards for immediate use and, in certain circum-
stances, could be erroneous (Fritschen and Gay, 1979; Maclean et al., 
2021). For example, Saunders et al. (1998) used E-type fine wire ther-
mocouples to measure air temperature, instead of conventional T-type 
wires, so that the effects from direct radiation and heat capacity can be 
reduced. The reliability of such data hinges largely on factors like station 
upkeep, sensor functionality, power continuity, and unforeseen disrup-
tions. To ensure the dependable application of microclimatic measure-
ments in ecosystem studies, rigorous QA/QC (Quality 
Assurance/Quality Control) protocols are imperative (e.g., Maclean 
et al., 2021). Regrettably, even seemingly plausible values recorded at a 
station can be misleading, as illustrated in Fig. 2, showing both a pyr-
anometer and a rain gauge obscured by snow on January 22, 2024. 
Consequently, it becomes challenging to ascertain the accuracy of 
recorded precipitation and short-wave radiation. Implementing heated 
tubing for rain gauges during snowfall periods is strongly recommended, 
although this practice is not widely adopted. Through our microclimatic 
investigations, numerous undocumented events have been observed, 
leading to inaccurate measurement records. Instances such as bird and 
insect dwellings (e.g., spider webs) on radiometers, litterfall blockages 
in rain gauges, and misalignment of radiometers are common distur-
bances that can cause false recordings at microclimatic stations. 

Fig. 2. Snow blanketed the rain gauge and pyranometer on January 22, 2024, 
at a microclimatic station in East Lansing, Michigan, during a week-long 
snowfall period. 
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The microclimates of the soil, the sub-canopy space, and the canopy 
vary greatly with height in plant ecosystems. Such variations can make 
observations especially challenging, because sensors may have to be 
located at poorly accessible heights in forests, for example, and the 
number of sensors is multiplied by the number of measurement heights, 
creating higher costs and complexities. One way to address the height 
dependence of microclimatic variables is to use vertically layered soil- 
plant-atmosphere models (also called land surface models). These 
models can simulate both ecosystem fluxes and the microclimate as a 
function of height, within and above ecosystems, which can be critical 
when considering species that may be confined to certain canopy layers 
and locations. The first of these models were based on resistance/flux- 
gradient type modelling (Waggoner and Reifsnyder, 1968; Norman 
1979), and since then they have become far more sophisticated in their 
biotic physiological and turbulent transport parameterization (Meyers 
and Paw U, 1987; Pyles et al., 2000, 2004; Paw U, 2002; Staudt et al., 
2010; Chang et al., 2018). These soil-plant-atmosphere models can be 
linked to regional scale models to simulate regional 
microclimate-ecosystem interactions (Xu et al., 2014; 2017). 

Microclimatic variables undergo significant fluctuations over time, 
with varying rates of change observed among them. For instance, both 
incoming and outgoing radiation can plummet by over 90 % within 
mere minutes as clouds develop on an otherwise clear day (Chen et al., 
1993a). Similarly, air temperature and relative humidity can exhibit 
marked disparities within just 1–2 h, in stark contrast to the more 
gradual alterations seen in soil microclimate parameters such as soil 
temperature and moisture levels. Accounting for these distinctions is 
paramount in ecological research, as field data collected at different 
intervals (e.g., hours or days apart) should not be directly juxtaposed. 
For example, due to equipment constraints, microclimatic conditions 
often are gauged and compared across multiple locations using portable 
thermometers at varying times. Despite efforts to standardize mea-
surement windows (e.g., 10:00 – 14:00 h) in soil respiration studies, 
exercising caution is imperative when juxtaposing data without proper 
temporal calibration. This vigilance is particularly pertinent in micro-
climatic studies spanning gradients, such as transitions from forest edges 
to interiors or from streams/roads to remote landscapes (Chen et al., 
1993a; Matlack, 1993; Brosofske et al., 1999; Saunders et al., 1999; 
Baker et al., 2014; Hofmeister et al., 2019). Ideally, comparisons of 
microclimatic conditions should rely on data collected simultaneously. 
Furthermore, owing to temporal variability, reliance solely on mean 
values from finely grained temporal data to characterize microclimate 
over broader time scales (e.g., hourly data into daily averages) may be 
inadequate. Instead, it is prudent to generate other statistical measures 
such as maximum, minimum, range, cumulative totals, and extreme 
values (a.k.a. anomalies) to comprehensively grasp microclimate dy-
namics across various temporal scales. These challenges are exacerbated 
by non-linear physical and ecosystem processes that result in mean 
values of the biotic processes not matching calculations of those biotic 
processes from mean microclimatic variables. For example, the monthly 
ecosystem respiration calculated from mean monthly temperatures 
using Q10 models will usually not match the mean values calculated on 
an hourly basis, from hourly temperatures. 

Across horizontal spatial scales, similar attention is imperative due to 
the considerable variation in land surface properties such as micro-
topography, vegetation, and soil composition. As illustrated in Fig. 3, the 
land surface temperature of an experimental switchgrass plot ranged 
from 20.9 ◦C to 29.4 ◦C on July 19, 2021, despite the seemingly ho-
mogeneous planting of switchgrass across the eddy-covariance mea-
surement footprint of 500 m (Zenone et al., 2011). These substantial 
spatial temperature discrepancies, along with variations in other 
microclimatic variables, are frequently observed in diverse ecosystems 
and landscapes, including the spatiotemporal dynamics of urban heat 
islands (Myint et al., 2015; Shiflet et al., 2017). In the Pacific Northwest, 
notable disparities in air temperature, soil temperature, relative hu-
midity, and incoming short-wave radiation were recorded in a relatively 

uniform old-growth forest during the growing season (Chen and 
Franklin, 1997), attributable in part to the forest’s mosaic of succes-
sional patches (e.g., canopy gaps) and species composition (Gray et al., 
2002). Comparable findings have been documented in other forests 
(Chazdon et al., 1988; Ma et al., 2010) and ecosystem types such as 
croplands and grasslands (Saunders et al., 1998; Shao et al., 2017). 
Moreover, significant microclimatic variations along vertical profiles of 
plant communities and soil have been observed (Rambo and North, 
2009; Yan et al., 2018). It is evident that measurements taken at specific 
heights or depths cannot be extrapolated to other vertical positions 
without meticulous calibration. For example, soil and ecosystem respi-
ration rates are frequently predicted using the Q10 model, which relies 
on soil or air temperatures, or their combination (Chen, 2021). How-
ever, it is crucial to note that not all reported models are based on 
temperature measurements taken at the same position and time within 
the plant-atmosphere-soil column (Reichstein et al., 2023; Zou et al., 
2022). Consequently, predicted respiration rates may be constrained to 
the study site and entail considerable uncertainty when extrapolated 
temporally and spatially, impeding their applicability to other ecosys-
tems and forecasting efforts. 

The magnitude and temporal-spatial dynamics of multiple micro-
climatic variables often exhibit strong correlations, underscoring the 
importance of considering multiple variables as fundamental drivers of 
ecosystem processes. As demonstrated by Chen et al. (1996), the spatial 
changes of different microclimatic variables within an isolated forest 
patch showed contrasting patterns and were dependent on time (hours 
of a day, days of a year). In ecosystem studies, there is a growing trend 
towards integrating multiple microclimatic variables into ecosystem 
modeling endeavors (e.g., Xia et al., 2023). Some well-documented 
interdependent changes include the synchronized variations in diel 
temperature and relative humidity, as well as seasonal temperature 
patterns correlating with precipitation in continental climate regions. 
Notably, high relative humidity, increased soil moisture, and reduced 
VPD following precipitation events are among the most prevalent 
microclimatic phenomena in terrestrial landscapes. However, these 
intuitive relationships may not always hold true or be readily apparent. 
For instance, forests with dense canopy cover may experience a reduced 
increase in soil moisture after light rains due to high canopy interception 
(Yu et al., 2022; Skhosana et al., 2023). Nevertheless, grasping the 
intricate interplay among microclimatic variables is vital for under-
standing the biophysical drivers of ecosystem processes and functions. 

Some microclimatic variables utilized in ecological research are not 

Fig. 3. Land surface temperature at an eddy-covariance flux tower site of the 
Kellogg Biological Station with switchgrass plantation on July 19, 2021. Data 
courtesy of Bruno Basso, Michigan State University. 
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directly measured but rather estimated or calculated from indirect ob-
servations. Growing degree days, growing season length, frost-free 
period, snow accumulation (either within the year or from previous 
seasons), daily-to-annual precipitation, total solar hours, drought oc-
currences, and heatwaves, are among the common microclimatic mea-
sures applied in ecological studies, including modeling. It is important to 
note the methodological definitions and discrepancies in delineating 
these metrics. Traditionally, climatologists have defined the growing 
season based on temperature, precipitation, and sunlight availability 
(Körner et al., 2023), primarily for agricultural management, where 
higher temperatures and sufficient moisture support longer growing 
seasons. The start and end of the growing season, for instance, have been 
extensively used in remote sensing of phenology for ecosystem pro-
duction, often coupled with ground measurements of net ecosystem 
exchange of CO2 from eddy-covariance flux towers. However, remote 
sensing researchers typically employ a threshold value of vegetation 
index (e.g., EVI or NDVI) to determine the beginning and end of the 
growing season (Yuan et al., 2024), whereas flux scholars define the 
period as when detectable gross primary productivity (GPP) exceeds 3 
continuous days. Consequently, the growing season length derived from 
these approaches can yield vastly different results, leading to consider-
able uncertainty in model predictions of ecosystem functions or 
impeding comparisons among models or between research findings in 
different ecosystems. Similar challenges can be found in delineating 
drought and heatwaves (Qu et al., 2023). 

1.2. Changes in microclimate within and across ecosystems 

In Rotach and Calanca’s definition (2003), the emphasis on micro-
climate centers around surface properties that determine the magnitude 
and dynamics of microclimate. Since the pioneering works of Wolfe and 
colleagues in the 1940s and 1950s on topographic influences on 
microclimate (Wolfe et al., 1943, 1949, 1950) considerable attention 
has been directed towards understanding how overstory canopies, litter 
layers, and soils shape microclimate conditions. Generally, air and soil 
temperatures within vegetated areas exhibit greater stability compared 
to open areas (Chen et al., 1993a; 1999; De Frenne et al., 2019; 
Meeussen et al., 2021), although, depending on season, they may be 
either lower (e.g., daytime in summer months) or higher (e.g., nighttime 
in winter months). Light distribution, including PAR, within canopies 
varies significantly and depends on factors such as leaf density and ar-
chitecture, and their horizontal and vertical distribution (Chen and 
Black, 1992; Chen et al., 1993a; Canham et al., 1990, 1994; Leuchner 
et al., 2011; Matsuo et al., 2021). The pioneering research of Norman 
et al. (1971) on light distribution under forest canopies revealed sub-
stantial differences in light levels within a few centimeters at a given 
time (Chazdon et al., 1988; Chen and Franklin, 1997), suggesting the 
need for numerous radiometers or instruments with multiple sensors to 
accurately quantify radiation mean and variation under forest canopies 
(Chadson et al., 1988; Webster et al., 2016). Relative humidity within 
forests is typically higher than that in open areas but can also be lower or 
similar during precipitation events. Consequently, VPD within forests is 
generally lower than that in adjacent open areas (e.g., after forest 
clearing). These differences are commonly attributed to the “buffering 
effects” of overstory canopies, which have been widely demonstrated to 
contribute to more stable and less extreme climates in urban landscapes 
through the expansion of greenspaces (Erell et al., 2012), in agro-
ecosystems through the establishment of tree/shrub covers (including 
corridors) (Cleugh, 1998; Lin, 2007), and in forests by retaining some 
trees during harvesting (Xu et al., 1997; Chen et al., 1999; Zheng et al., 
2000; Heithecker and Halpern, 2006). 

Litter layers in natural ecosystems serve as another buffering struc-
ture mediating soil microclimate and albedo – a phenomenon long 
observed (MacKinney, 1929; Sayer, 2006). Similar to the buffering 
functions of canopies, litter layers shield the soil by reducing soil heat 
flux and evaporative water loss. Consequently, soils with high litter 

cover exhibit more stable temperatures and higher moisture levels (Ogée 
and Brunet, 2002; Iqbal et al., 2020; Ma et al., 2010). These attributes 
are why mulches are incorporated into cover crops (Hartwig and 
Ammon, 2002) and urban lawns (Jabran and Jabran, 2019), woody 
debris is retained during forest harvesting (Heithecker and Halpern, 
2006; Harmon and Hua 1991; Innes et al., 2006; Dhar et al., 2022), 
grazing is reduced in grasslands (Odriozola et al., 2014; Yan et al., 
2018), and stover is preserved in cover crop management (O’Brien et al., 
2020). Therefore, it is necessary to include litter depth and coverage 
when predicting ecosystem processes such as soil respiration (DeForest 
et al., 2009; Ryu et al., 2009), decomposition, and nutrient availability. 
Litter cover also has an important role in reducing radiation reflectance 
compared to bare ground. Increasingly, studies have demonstrated that 
the albedo of altered land surfaces can significantly differ from undis-
turbed ecosystems (e.g., >10 %). This disparity, if sustained throughout 
the year, is equivalent to >0.5 Mg CO2 ha− 1 year− 1 in warming (lowered 
albedo) or cooling (elevated albedo) benefits provided by the ecosystem 
(Abraha et al., 2021; Chen, 2021; Sieber et al., 2022; Lei et al., 2023; Zhu 
et al., 2024). For instance, litter layers on forest floors (Melloh et al., 
2001) and croplands (e.g., stover, Kim et al., 2009) have been found to 
have substantially lower albedo. During snow-covered periods, litter’s 
high absorption of incoming radiation results in faster snow melting, 
which, in turn, alters soil water content and temperature. The reduced 
reflectance due to litter cover is particularly pronounced in ecosystems 
with sparse overstory cover (e.g., drylands, Shao et al., 2017). 

Soil microclimate exhibits greater stability compared to near-surface 
microclimate, although spatial and temporal variations can be signifi-
cant for physical and ecological processes, such as nutrient leaching into 
deep soils, microbial activities, and litter decomposition (Waring and 
Running, 2010). Soil temperature and moisture, along with their vari-
ations across a stand and over vertical profiles, as well as over time, 
require careful examination. Microtopography, for instance, serves as 
the primary driver for horizontal water movement in soils, resulting in 
substantial soil moisture accumulation in concave positions across 
stands (e.g., Bogner et al., 2013) (Fig. 4). Within the soil, factors such as 
texture, density, organic content, root distribution, and soil fauna 
contribute to varying magnitudes and dynamics of soil temperature and 
moisture holding capacity (Meyer et al., 2007). 

Microclimatic conditions and dynamics at landscape levels (span-
ning a few kilometers) also depend on landscape structure, regardless of 
similar regional climates (Chen et al., 1999; Vanwalleghem and 

Fig. 4. An illustration of microtopographic influences on soil moisture which, 
in turn, affect species composition and density. 

J. Chen et al.                                                                                                                                                                                                                                     



Agricultural and Forest Meteorology 355 (2024) 110105

6

Meentemeyer, 2009). Across a 10-km landscape in Missouri’s Ozarks, Xu 
et al. (2002) reported significant variations in microclimate due to 
topographic features, overstory and understory cover, and landscape 
patch types. Seasonal mean air temperatures ranged from 19.6 ◦C to 
22.7 ◦C, with volumetric soil moisture varying from 3.5 % to 28.6 %. In 
northern Wisconsin, where the landscape is flat, Saunders et al. (1998) 
also observed considerable soil temperature fluctuations along a ~4 km 
transect, ranging from 14.23 ◦C to 27.31 ◦C. Similar findings have been 
reported in other landscapes as well (e.g., Townsend and Fuhlendorf, 
2010). Apart from these ecosystem-type differences, extensive literature 
has accumulated on microclimates resulting from landscape features 
such as edges, roads, streams, corridors, and remnant forest patches in 
agricultural landscapes or small openings in forested landscapes (Chen 
et al., 1993a; Brosofske et al., 1999; Rambo and North, 2008). These 
structures not only create unique microclimates (Chen et al., 1993a) but 
also induce horizontal changes in adjacent ecosystems. Across clearcuts 
and forest edges, such influences can extend to more than 240 m in 
old-growth Douglas-fir forests in the Pacific Northwest (Chen et al., 
1995), although the depth-of-edge influences vary by variable of the 
interest. Similar edge influences on microclimate have been widely re-
ported in fragmented tropical rainforests (Laurance, 1991), regenerated 
hardwood landscapes in New England (Matlack, 1993), and other con-
texts (Meeussen et al., 2021). Streams and roads are also prominent 
landscape features in terrestrial ecosystems. Their unique microclimates 
play fundamental roles in affecting various ecological processes, such as 
species distribution, plant growth and mortality (Chen et al., 1992), seed 
dispersal (Warneke et al., 2022), animal movement (Haynes and T. 
Cronin, 2006), carbon and water fluxes, and nutrient cycling (Weathers 
et al., 2001). 

More importantly, these features can exert extensive influences on 
adjacent ecosystems – commonly referred to as edge effects (Harper 
et al., 2005; Chen et al., 1995), which are anisotropic and 
time-dependent. As demonstrated in Chen et al. (1993), edge orientation 
is a fundamental variable determining the magnitude and dynamics of 
all microclimatic variables. At a south-facing edge, incoming solar ra-
diation exhibits similar diurnal changes to that in the adjacent clearcut, 
whereas at a north-facing edge, shadowing effects from overstory trees 
produce diurnal changes in incoming radiation similar to those inside 
the forest. Consequently, the depth-of-edge influence much less from a 
north-facing edge into the forest. Due to these direction-dependent edge 
effects, edge influences from multiple directions are much stronger than 
those from a single direction (Chen et al., 1996; Zheng and Chen, 2000; 
Fletcher, 2005; Li et al., 2007). Additionally, these differences due to 
edge orientation extend to other microclimatic variables such as tem-
perature and moisture (Chen et al., 1995). For microclimates associated 
with other linear structures (e.g., roads, streams), corridor orientation 
also remains a critical factor when assessing edge effects, particularly in 
the context of developing management plans (e.g., designing riparian 
buffer zones; Van de Water and North, 2011). 

Spatial variations in canopies and soil properties strongly influence 
the unique local microclimate within forest stands, which, in turn, is 
further influenced by landscape structure across ecosystems (Fig. 5). As 
microclimatic information is increasingly used to interpret and model 

ecosystem/landscape processes, managing and predicting microclimate 
from structural features is becoming an important research component 
to create an optimum microclimate that promotes ecosystem-landscape 
functions. Various harvesting methods in forestry (North et al., 2009; Ma 
et al., 2010; Knapp et al., 2021), grazing intensities in rangelands for 
livestock production (Shao et al., 2017), and variable plantation den-
sities in forest (North et al., 2019) and crop management are among the 
popular practices in relevant fields. In western US conifer forests, 
microclimate homogenization can result from fire suppression, due to 
dense tree infilling, and from high-severity fires, due to canopy con-
sumption. A principle ecological objective with fuels treatments (me-
chanical thinning and prescribed fire) is to restore fine-scale forest 
heterogeneity by reducing fuels, by lowering tree density, and by 
creating openings. In particular, fuels treatments often aim to restore a 
spatial pattern of individual trees, clumps of trees, and openings (ICO) 
that has been consistently found in forests that historically have had 
frequent (≤ 30 year), low-intensity fire regimes (Churchill et al., 2013; 
Fry et al. 2014). When an ICO structure is restored, fine-scale micro-
climate and habitat heterogeneity increases, increasing plant and animal 
species richness and evenness (Ryu et al., 2009; North et al., 2022). In 
turn, this heterogeneity is perpetuated when the forest burns at low 
severity, because fire effects vary with fine-scale differences in fuel and 
microclimate conditions (Moritz et al., 2014; Chamberlain et al. 2023). 
Variable microclimate conditions following fuel reduction practices are 
sometimes used as an indicator of effective forest treatment (Bigelow 
and North, 2012). For example, recent research (Ziegler et al. 2017; 
Ritter et al. 2020, 2023) suggests the ICO pattern may reduce radiant 
and convective heat transfer, which along with lower fuel loads in the 
openings, may explain why ICO has been associated with reduced fire 
severity (Koontz et al. 2020). However, it’s not clear if there’s a point at 
which the forest becomes so open that wind speed increases or an 
optimal clump and opening size for reducing the heat transfer that leads 
to crown fire. 

1.3. Microclimatic influences on ecosystems 

Much of microclimate research has garnered attention for its direct 
and indirect impacts on both human societies and natural ecosystems. A 
prominent example is the phenomenon of temperature-dependent sex 
determination (TSD) in reptiles, such as freshwater and sea turtles 
(Charnier, 1966). Minor temperature variations of less than 0.5 ◦C can 
lead to the development of either male or female offspring (Bull and 
Vogt, 1979; Standora and Spotila, 1985). Similarly, amphibians (Janzen, 
1994) and certain vertebrates (Valenzuela and Lance, 2004) exhibit 
temperature-dependent traits. In vegetation ecology, researchers have 
long investigated spatial shifts in vegetation types, species composition, 
richness, and structure, as well as major ecosystem processes, with 
microclimate serving as a primary driver. Virtually all ecological models 
incorporate (micro)climate data as an essential input to understanding 
key processes such as plant growth and mortality, photosynthesis, res-
piration/decomposition, species dispersal, and breeding. Collectively, 
these processes often determine ecosystem functions such as produc-
tivity, water conservation, and biological diversity. For instance, in 
fire-dependent forests in the western US, several fundamental ecosystem 
processes are hampered due to moisture limitations. Fire suppression 
has increased tree density and competition for soil moisture. Manage-
ment practices such as reducing tree canopy cover enhance available 
water by facilitating greater snow accumulation on the forest floor and 
increasing water infiltration into the soil, thereby reducing water loss 
through snow sublimation in tree canopies (Stevens, 2017). Decreasing 
tree basal area also increases soil moisture availability for the remaining 
trees and other plants (Stephens et al., 2021). In many seasonally dry 
forest types, increases in water availability can ‘jumpstart’ ecosystem 
processes such as decomposition (Johnson et al., 2009), nutrient cycling 
(Johnson and Turner, 2019), and soil respiration (Ma et al., 2005), that 
have ‘stalled’ as soil moisture is depleted. 

Fig. 5. An old-growth, mixed-conifer stand in Yosemite National Park with a 
restored fire regime. Note the tree spatial distribution consisting of individual 
trees, clumps of tree and openings that provide heterogeneous microclimate. 
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While a vast body of literature delves into the regulation of 
ecosystem processes and functions by microclimatic factors, we under-
score two critical issues in understanding microclimate’s role in 
ecological research: (1) the significance of microclimatic extremes, and 
(2) the combined influences of multiple microclimate variables, both of 
which are subject to scale-dependent regulations. 

Understanding microclimatic influences on ecosystem processes re-
quires exploring more than data mean values. Accumulating evidence 
highlights the profound impacts of extreme microclimates, including 
short-term temperature and precipitation anomalies (Kiladis and Diaz, 
1989), heatwaves, droughts (Fettig et al., 2019), frosts, and rainstorms, 
which can precipitate enduring effects and shift ecosystems to alterna-
tive states, with or without the possibility of recovery. In investigating 
the regulatory mechanisms of ecosystem water use efficiency in an oak 
opening forest in Ohio, Xie et al. (2016) identified spring leaf area and 
precipitation, summer net radiation and temperature, and annual VPD 
as the primary explanatory variables for seasonal variation. However, 
the seasonal dynamics of the interaction between precipitation and 
drought status emerged as the key variable for intraannual variability. 
Notably, for photosynthesis, thresholds exist for parameters such as 
PAR, VPD, and temperature, beyond which stomata close at their upper 
limits (Chen et al., 2002; Earles et al., 2018; Grossiord et al., 2020). 
Moreover, temperature-driven soil respiration undergoes alterations 
under conditions of low soil moisture (Zou et al., 2022). On the Mon-
golian Plateau, standardized anomalies of vegetation indices exhibit 
strong correlations with drought and extreme temperature events, albeit 
the strength of these correlations varies according to biome type (John 
et al., 2013). Recent research has increasingly focused on extreme high 
and low temperatures, partly due to ongoing global warming trends. 
Studies have documented significant reductions in GPP, with reports of 
30 % and 50 % decreases during the European heatwaves of 2003 (Ciais 
et al., 2005) and the 2010 Russian heatwave (Bastos et al., 2014), 
respectively. These reductions surpass those attributable to climate 
warming and CO2 fertilization alone. In Mongolia, a severe cold winter 
during 2010–2011 led to a 26 % livestock mortality rate. Furthermore, 
extreme events often manifest with multiple climatic variables, such as 
reduced soil moisture during heatwaves (De Boeck et al., 2010; Qu et al., 
2023). Detailed information regarding the magnitudes, durations, and 
timing of these events is crucial for comprehending their impacts on 
ecosystem processes. 

A microclimatic variable rarely acts as the sole determinant in 
regulating an ecosystem process but often operates in conjunction with 
others, leading to nonlinear consequences of ecosystem processes (e.g., 
photosynthesis, evapotranspiration), and functions (e.g., production) 
because microclimatic variables are highly interdependent over time 
(Chen et al., 2004b; Rillig et al., 2019; De Pauw et al., 2022; Xia et al., 
2023). In a synthesis review focusing on the controlling mechanisms of 
carbon exchange in terrestrial ecosystems, Templer and Reinmann 
(2011) noted that “single-factor manipulations can result in dramatic 
shifts in ecosystem carbon dynamics. However, predicting the impacts of 
environmental change on the magnitude and direction of ecosystem 
carbon exchange based solely on manipulation of individual factors is 
not always feasible due to additive and synergistic effects.” This 
perspective finds increasing support from a growing body of evidence in 
ecology (e.g., Brosofske et al., 2001; North et al., 2005; Song et al., 
2019). For instance, soil respiration was initially modeled with soil 
temperature as the sole driver, but subsequent research has recognized 
additional significant variables such as soil moisture, litter cover, leaf 
area, and growing season length (e.g., Concilio et al., 2009; Zou et al., 
2022). Indeed, the classical temperature-respiration paradigm based on 
the Q10 model may falter when soil moisture reaches a critical threshold 
(Chen, 2021), particularly in dryland ecosystems or regions experi-
encing prolonged dry periods. In modeling photosynthesis, earlier 
empirical models were primarily based on PAR integrate factors such as 
CO2 concentration, temperature, VPD, and soil moisture (Grossiord 
et al., 2020). Similarly, the original temperature and light-driven ET 

model proposed by Thornthwaite (1948) has undergone refinement to 
include net radiation, relative humidity, wind speed, and soil heat flux in 
equations such as the Penman-Monteith and Priestley-Taylor models 
(Chen, 2021). Clearly, comprehending covariance and its temporal and 
spatial dynamics is an essential prerequisite before quantifying the 
complex regulatory mechanisms governing ecosystem processes. 

An emerging consensus in addressing multiple microclimatic factors 
is that each independent or interactive variable may vary in its impor-
tance as a driver, measured by its contribution to the total statistical 
variance. Drawing from 1119 global manipulative experiments on 
terrestrial carbon cycling, Song and colleagues concluded that carbon 
production and allocation are not equally influenced by temperature, 
precipitation, CO2 enrichment, and nitrogen deposition, irrespective of 
their statistical significance. Crucially, they noted that the magnitude of 
their impact depends on the background climate and ecosystem condi-
tion (Song et al., 2019). Through simulation, Xia et al. (2023) quantified 
the contributions of atmospheric CO2, temperature, precipitation, and 
radiation to resource availability and carbon allocation at a global scale. 
They observed contrasting effects of dominance on carbon allocations, 
with increased precipitation and CO2 leading to significant reductions in 
light availability and increased carbon allocation to woody plant parts. 
Conversely, rising temperatures can diminish water availability, 
resulting in decreased carbon allocation to woody parts. All four envi-
ronmental factors consistently exhibited negative effects on carbon 
allocation to roots, with increased precipitation causing the most sub-
stantial reduction in carbon allocation to them. 

Employing artificial neural networks with 14 input variables from 
eddy-covariance flux towers, Moffat et al. (2010) investigated ecosystem 
responses to climatic variables, revealing PAR and diffuse radiation as 
the main variables for daytime flux, while VPD emerged as the most 
crucial non-radiative variable. More recently, Zou et al. (2024) utilized a 
gated recurrent unit (GRU) model with 28 potential drivers to simulate 
half-hourly net ecosystem exchange (NEE) of CO2 using 12 years of 
continuous flux data from seven experimental bioenergy crops in 
southwest Michigan, USA. They analyzed the relative importance of 
biophysical variables and found that the contributions of individual 
variables appear more complex during the non-growing season, 
including incoming shortwave radiation, day of the year, temperature, 
Monin-Obukhov stability (i.e., effect of buoyancy on the turbulent flow 
of air near the object’s surface), wind direction, and soil water content. 
Although the six most important forcing variables largely align with the 
literature (except wind direction), their ranked importance varied by 
ecosystem type and modeling scale. Across the Mongolia Plateau, Yuan 
et al. (2024) demonstrated that spring phenology, which directly affects 
ecosystem productivity, is determined by temperature in some parts of 
the plateau, but by precipitation in others. Similarly, complex micro-
climatic influences on peak growth and fall phenology were reported on 
the Mongolian Plateau and at high latitude regions (Bao et al., 2021). In 
water-limited, fire-dependent forests across California’s Sierra Nevada, 
increases in water availability and PAR promote vigorous growth and 
increased resilience in restoration efforts (Meyer et al., 2007; Ma et al., 
2010; Zald et al., 2022). These drivers and their relative importance, 
however, may differ in light-limited systems (Chen et al., 2004a; North 
et al., 2004). Clearly, the statistical regulatory powers of microclimatic 
variables on ecosystems are not uniform but vary by ecosystem, time, 
and the combination of all other drivers. It is worth reiterating the 
importance of emerging machine learning and other artificial intelligent 
methods (e.g., Bayesian statistics) in microclimate studies. These 
methods are particularly valuable for site selection at underrepresented 
locations (Chu et al., 2021), implementing QA/QC protocols such as 
data screening, outlier identification, and gap filling (Irvin et al., 2021), 
modeling spatiotemporal changes and aggregations (Saunder et al., 
1998; Ouyang et al. 2014; Poe et al., 2020), and understanding their 
interactions with ecosystems (Knox et al., 2021; Zou et al., 2024). 

Finally, understanding microclimatic controls and regulations of 
ecosystem processes requires exploration at appropriate scales and/or 
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across multiple scales, particularly over time. In predicting forage yield 
in California, Murphy (1970) highlighted the significance of the initia-
tion of fall forage growth, which depended on the first half-inch of 
effective rainfall in the fall, while the annual yield of this forage was 
influenced by the amount of precipitation received by the third week in 
November. Since then, numerous studies have underscored the impor-
tance of incorporating microclimatic statistics at the appropriate tem-
poral and spatial scales. For instance, Ouyang et al. (2014) investigated 
the influences of PAR and air temperature on net ecosystem exchange of 
CO2 over a 7-year period in oak openings located in Northwest Ohio. 
They observed that PAR was the primary driver at shorter time scales (e. 
g., hours, daily), whereas air temperature dominated NEE at 
seasonal-annual scales. Notably, PAR co-varied with NEE without time 
lag, while air temperature lagged behind PAR by 2–3 h during growing 
seasons. Using VPD as an example (see Fig. 6), ecosystem production 
and ET predictions would significantly differ if daily-to-monthly values 
were used instead of hourly VPD, or if VPD exceeded threshold values. 
Thus, utilizing microclimate information to generate summaries at the 
appropriate temporal scale is crucial for accurate forecasting and 
reducing model uncertainty. Moreover, employing microclimatic sum-
maries at multiple scales (e.g., growing season length, growing degree 
days) is essential depending on the specific study objectives. 

In recent years, vapor pressure deficit – a variable computed from air 
temperature and relative humidity – has garnered increasing recogni-
tion for its role in regulating processes related to plant physiology, soil 
dynamics, and ecosystem carbon/water cycling (e.g., Goetz et al., 1999; 
Chen et al., 2004a; Mu et al., 2007; Seager et al., 2015). In the realm of 
agricultural development, the Food and Agriculture Organization (FAO) 
employed the process-based Penman-Monteith equation to estimate 
reference evapotranspiration (ETo), which subsequently became the 
predominant algorithm in most earth system models. Central to ETo 
estimation is the slope of saturation vapor pressure (Δ), a fundamental 
parameter (Allen et al., 1994) resulting from linearization of the 
non-linear saturation vapor pressure curve, which allows substituting 
the surface temperature-based vapor pressure difference between sur-
faces and the atmosphere with the VPD. Recent endeavors have shifted 
the focus towards utilizing VPD as the primary driver in estimating 
actual evapotranspiration. In models concerning plant transpiration and 
photosynthesis, the original stomatal conductance (gs) model proposed 
by Ball et al. (1987) has been revised, replacing Δ with VPD as the 
primary influencing factor (Leuning, 1995). Xu et al. (2024) have sug-
gested that the global increase in VPD will intensify atmospheric de-
mand for water vapor, thereby exacerbating aridity and drought 
conditions over land. More recently, Li et al. (2023) investigated the 

long-term changes in global GPP, ET, and water use efficiency (WUE). 
Their findings suggest that terrestrial ecosystem WUE, initially 
augmented by long-term increases in atmospheric CO2 concentration 
and a warming climate, has reached saturation due to elevated VPD 
resulting from warming-induced effects. This elevation in VPD depresses 
photosynthesis while augmenting ET, ultimately leading to a saturation 
point in WUE. 

Calculations of VPD, meanwhile, demand careful attention for 
proper applications. VPD is not a directly measured variable but instead 
is a calculated value from measurements of air temperature and relative 
humidity using non-linear saturation vapor pressure equations. Utilizing 
linear averages of daily, monthly, or annual temperature and relative 
humidity in these calculations – a practice that has been common, 
particularly in remote sensing and ecosystem modeling – can lead to 
distorted and biased VPD values (Mu et al., 2007). Complicating matters 
further, the primary effects of VPD occur during the day, coupled to its 
nonlinear relationship with temperature and humidity, making the use 
of averages at larger time scales inappropriate. As illustrated in Fig. 4, 
the 30-minute VPD data from July 2016 at a switchgrass field in 
southwest Michigan exhibited clear diel changes, with low values 
observed at nighttime and higher values during the day. There are many 
values exceeding 1.0–1.5 kPa when stomata begin to close, resulting in 
reduced photosynthesis and transpiration (Chen et al., 2002). However, 
the daily mean VPD for the month averaged at 0.828 kPa (range: 0.206 
to 1.377 kPa), which might falsely suggest stress-free conditions for the 
plants. More concerning, the daily VPD calculated from daily mean air 
temperature and relative humidity was even lower, averaging at 0.670 
kPa (range: 0.198 to 1.053 kPa), further downplaying the importance of 
VPD in modeling stomatal conductance. Additionally, when modeling is 
conducted at a monthly scale, the average VPD based on monthly mean 
air temperature and relative humidity drops significantly to 0.144 kPa, 
indicating an insignificant influence of VPD on photosynthesis, ET, and 
transpiration. Some authors have recognized these deficiencies and have 
opted to use daily maximum VPD values, although this approach may 
tend to overestimate the influence of VPD. In summary, it is crucial to 
employ relatively high-frequency (half-hourly and hourly) measure-
ments of air temperature and relative humidity for calculating VPD, 
rather than relying on averaged values over longer time periods (daily, 
weekly, monthly, annual) (Fig. 4). 

Spatially, microclimatic conditions beyond the boundaries of the 
studied ecosystem may play a crucial role in modeling ecosystem pro-
cesses. In addition to the examples of edge effects discussed earlier in 
section 3, there are studies indicating distant effects as well. For 
instance, Brosofske et al. (1997) demonstrated a strong correlation be-
tween the temperature in small streams in western Washington and the 
soil temperature and moisture of uplands within the same watershed. In 
the Great Lakes region, water temperature of the lakes influences the 
microclimate (e.g., snowfall) of nearby lands through phenomena like 
lake effects, subsequently impacting plants, animals, and ecosystem 
processes (Fujisaki-Manome et al., 2017). In mountainous regions, 
temperatures and precipitation at high altitudes directly influence the 
microclimate of downstream water bodies, riparian zones, and soil 
moisture (Naiman et al., 1998). This effect is particularly pronounced in 
regions such as Central Asia and the European Alps, where snow melting 
serves as the primary water source for agriculture in lowlands (Lutz 
et al., 2014; Chersich et al., 2015). In summary, consideration of 
microclimatic influences on ecosystems should not be confined solely to 
in situ conditions but should also be considered within the context of 
multiple spatial scales. 

1.4. Outlooks 

Drawing upon over 100 years of scholarly work on microclimate, we 
present an overview of the critical issues surrounding the collection and 
utilization of microclimate records in ecosystem studies. We then delve 
into elucidating the structural influences on microclimate across both 

Fig. 6. Vapor Pressure Deficit (VPD, kPa) recorded by an eddy-covariance flux 
tower in a Switchgrass (Panicum virgatum) bioenergy crop field at the Kellogg 
Biological Station, Michigan, in July 2016. (a) VPD directly calculated from 30- 
minute air temperature (Ta, oC) and relative humidity (RH, %) measurements; 
(b) daily mean VPD of 30-minute measurements; and (c) daily VPD value 
computed from daily mean Ta and RH; (d) monthly mean VPD of 30-minute 
measurements; and (e) monthly VPD based on monthly mean Ta and RH. 
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time and space, along with exploring their impacts on ecosystem pro-
cesses and functions. We place particular emphasis on the importance of 
data quality assurance and quality control (QA/QC) in managing 
microclimatic records, highlighting their interdependent changes over 
time and space for various applications such as explorations of the 
feedback mechanisms between microclimate and ecosystems, con-
struction of ecosystem models, and development of guidelines for 
ecosystem management. Throughout the review, we offer some relevant 
case studies from the extensive literature to exemplify these concepts, 
acknowledging biases toward terrestrial ecosystems and insights gained 
from our prior research. The scientific community is increasingly 
recognizing the crucial role of microclimates in advancing ecosystem 
science. Understanding these issues is essential for advancing microcli-
mate research and fostering collaboration with other relevant disci-
plines. Here, we offer our perspectives on several key areas for future 
microclimate studies.  

• Microclimate data should be collected and used in a way that aligns 
with the timing and location of ecological structures and processes. 
Mismatches in time (e.g., using daily mean temperature for instan-
taneous photosynthesis) or space (e.g., relying on data from a nearby 
weather station) can lead to unreliable, highly uncertain, or incorrect 
conclusions. This is evident in studies of microclimate across forest- 
open edges and in modeling fire spread, where in situ wind speed is 
influenced by tree clustering and microtopography. 

• It is crucial to realize that feedback interactions between microcli-
mate variables and ecosystem characteristics exist at multiple spatial 
and temporal scales. Both legacy effects over time and distance ef-
fects in space are common. These casual relationships and their 
importance nonetheless are difficult to disentangle due to their often 
absence in required databases and analytical methods.  

• Traditional efforts to use microclimate data to model ecosystem 
processes and functions have focused on a few key variables (e.g., 
PAR, net radiation, VPD in modeling photosynthesis). It is important 
to recognize that these variables do not independently regulate 
ecological processes; rather, they are interdependent in time and 
space (i.e., correlated) and jointly cause changes in ecosystem pro-
cesses. Attention should also be given to other variables, including 
those that may seem less important at first glance, before excluding 
them from investigations. Importantly, their significance can vary 
over time, across different spaces, and depending on the scale of the 
investigation.  

• New technologies (e.g., remote sensing, smart wireless sensors, 
computational capabilities), the increasing number of microclimatic 
stations and datasets, and advanced analytical methods (e.g., 
Bayesian modeling, machine learning, big data analysis, network 
analysis, etc.) are emerging. These disruptive advancements have the 
potential to transform how microclimate research is conducted, 
addressing many of the issues discussed in this review. 
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